Review Faktor - Faktor yang Mempengaruhi Karakteristik Kuat Tekan Beton Geopolimer

Authors

  • Putrilyan Ezra Panjaitan Program Studi Teknik Sipil, Universitas Trisakti
  • Liana Herlina Jurusan Teknik Sipil, Universitas Trisakti

DOI:

https://doi.org/10.54367/jrkms.v3i2.858

Keywords:

beton geopolimer, fly ash, kuat tekan, suhu curing, waktu curing

Abstract

Beton merupakan salah satu material yang paling banyak digunakan untuk infrastruktur, tetapi menggunakan semen sebagai bahan dasar. Proses produksi semen akan menghasilkan gas CO2 yang dapat meningkatkan pemanasan global. Untuk mengatasi masalah tersebut, sudah seharusnya mencari bahan pengganti sebagai bahan pengikat untuk membuat beton. Bahan pengganti semen yang mengandung silika dan alumina akan berperan penting untuk mengendalikan masalah tersebut. Fly ash merupakan limbah dari pembakaran batu bara yang memiliki sifat pozzolanic. Studi literatur ini bertujuan untuk mengetahui pengaruh rasio alkali Na2SiO3/NaOH, molaritas NaOH, suhu dan waktu curing, umur beton pada beton geopolimer dengan bahan dasar 100% fly ash terhadap nilai kuat tekan. Rasio alkali Na2SiO3/NaOH sebesar 2,5 yang menghasilkan nilai kuat tekan yang optimal, sedangkan semakin besar molaritas NaOH akan menghasilkan kekuatan yang meningkat tetapi akan mempercepat ikat awal.Kuat tekan beton geopolimer yang di curing akan semakin meningkat seiring dengan bertambahnya suhu curing hingga 800C, setelah melewati 800C persentasekenaikan kuat tekan beton pada penelitian ini mengalami penurunan. Selain itu,waktu curing efektif diperoleh pada waktu 24 jam.Kekuatan tekan beton juga semakin meningkat seiring dengan bertambahnya umur beton, peningkatan efektif pada umur beton 7 hari.

References

Ahmed, M. F., Nuruddin, M. F., & Shafiq, N. (2011). Compressive strength and workability characteristics of low calcium fly ash based self compacting geopolymer concrete. World Academy of Science, Engineering and Technology International Journal of Civil and Environmental Engineering Vol:5, No:2.

Azevedo, A. G. S., Strecker, K., Barros, L. A., Tonholo, L. F., & Lombardi, C. T. (2019). Effect of curing temperature, activator solution composition and particle size in brazilian fly-ash based geopolymer production. In Materials Research (Vol. 22). https://doi.org/10.1590/1980-5373-MR-2018-0842

Bakkali, H., Ammari, M., & Frar, I. (2016). NaOH alkali-activated class F fly ash: NaOH molarity, curing conditions and mass ratio effect. Journal of Materials and Environmental Science, 7(2), 397–401.

Bhosale, P. M. . (2012). Geopolymer concrete by using fly ash in construction. IOSR Journal of Mechanical and Civil Engineering, 1(3), 25–30. https://doi.org/10.9790/1684-0132530

Brooks, R., Bahadory, M., Tovia, F., & Rostami, H. (2010). Properties of alkali-activated fly ash: High performance to lightweight. International Journal of Sustainable Engineering, 3(3), 211–218. https://doi.org/10.1080/19397038.2010.487162

Byakodi, A. S. (2016). Effect of curing temperature on compressive strength of geopolymer concrete. International Journal of Recent Scientific Research Vol 7, Issue 7 12377–12381.

Davidovits, J. (1988). Soft mineralurgy and geopolymers. Geopolymer 1988.

Davidovits, J. (1998). Geopolymer chemistry and properties. 1st European Conference on Soft Mineralurgy, Compiegne, France.

Delvianty, J., Selmina, M., Herius, A., & Noerdin, R. (2019). fly ash sebagai alternatif pengganti semen pada beton geopolimer ramah lingkungan. 56–62.

Fang, Y., & Kayali, O. (2013). The fate of water in fly ash-based geopolymers. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2012.05.024

Ferdy. (2010). Pengaruh temperatur dan waktu curing terhadap kuat tekan pasta geopolimer. 71.

Guo, X., Shi, H., & Dick, W. A. (2010). Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement and Concrete Composites, 32(2), 142–147. https://doi.org/10.1016/j.cemconcomp.2009.11.003

Hardjito, D., Cheak, C. C., & Lee Ing, C. H. (2008). Strength and setting times of low calcium fly ash-based geopolymer mortar. Modern Applied Science. https://doi.org/10.5539/mas.v2n4p3

Hardjito, D., & Rangan, B. V. (2005). Development and properties of low-calcium fly ash-based geopolymer concrete. In Research report GC.

Hassan, A. (2018). Experimental study of fly ash based geopolymer concrete. International Journal of Advanced Earth Science and Engineering, 7(1), 635–648. https://doi.org/10.23953/cloud.ijaese.344

Jamdade, P. P. K., & Kawade, P. U. R. (2014). Evaluate strength of geopolymer concrete by using oven Curing. IOSR Journal of Mechanical and Civil Engineering, 11(6), 63–66. https://doi.org/10.9790/1684-11656366

Joseph, B., & Mathew, G. (2012). Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Scientia Iranica, 19(5), 1188–1194. https://doi.org/10.1016/j.scient.2012.07.006

Khanna, P. A., Kelkar, D., Papal, M., & Sekar, S. K. (2017). Study on the compressive strength of fly ash based geo polymer concrete. IOP Conference Series: Materials Science and Engineering, 263(3). https://doi.org/10.1088/1757-899X/263/3/032032

Komnitsas, K., & Zaharaki, D. (2007). Geopolymerisation: A review and prospects for the minerals industry. Minerals Engineering, 20(14), 1261–1277. https://doi.org/10.1016/j.mineng.2007.07.011

Kong, D. L. Y., Sanjayan, J. G., & Sagoe-Crentsil, K. (2008). Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures. Journal of Materials Science. https://doi.org/10.1007/s10853-007-2205-6

Leonard Wijaya, A., Jaya Ekaputri, J., & Triwulan. (2017). Factors influencing strength and setting time of fly ash based-geopolymer paste. MATEC Web of Conferences, 138. https://doi.org/10.1051/matecconf/201713801010

Leong, H. Y., Ong, D. E. L., Sanjayan, J. G., & Nazari, A. (2018). Strength Development of Soil–Fly Ash Geopolymer- Assessment of Soil, Fly Ash, Alkali Activators, and Water.pdf.

Manesh, B. S., B, S. M., R, W. M., & V, P. S. (2012). Effect of Duration and Temperature of Curing on Compressive Strength of Geopolymer Concrete. International Journal of Engineering and Innovative Technology (IJEIT), 1(5), 152–155. http://ijeit.com/vol 1/Issue 5/IJEIT1412201205_30.pdf

Manuahe, R., Sumajouw, M. D. J., Windah, R. S., Abu Terbang, P., Cahyadi, D., Firmanti, A., Subiyanto, B., Litbang Permukiman, P., Litbang Kementerian Pekerjaan Umum Jl Panyaungan, B., Wetan, C., Bandung, K., Ekaputri, J., & Triwulan, T. (2014). Kuat Tekan Beton Geopolymer Berbahan Dasar Abu Terbang. Jurnal Sipil Statik. https://doi.org/10.5614/jts.2013.20.1.1

Memon, F. A., Nuruddin, M. F., Demie, S., & Shafiq, N. (2011). Effect of Curing Conditions on Strength of Fly ash-based Self-Compacting Geopolymer Concrete. 5.

Mindess, S., & Young, J. F. (1981). Concrete. Englewood Cliffs, N.J. : Prentice-Hall, ©1981.

Muhammad, N., Baharom, S., Amirah, N., Ghazali, M., & Alias, N. A. (2019). Effect of heat curing temperatures on fly ash-based geopolymer concrete. International Journal of Engineering & Technology, 8(January), 15–19.

Mustafa Al Bakria, A. M., Kamarudin, H., Bin Hussain, M., Khairul Nizar, I., Zarina, Y., & Rafiza, A. R. (2011). The effect of curing temperature on physical and chemical properties of geopolymers. Physics Procedia, 22, 286–291. https://doi.org/10.1016/j.phpro.2011.11.045

Neville, A. M., & Brooks, J. J. (2010). Concrete Technology (2nd ed.). In Harlow, Pearson Education Limited. https://doi.org/10.6004/jnccn.2015.0201

Palomo, A., Grutzeck, M. W., & Blanco, M. T. (1999). Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research. https://doi.org/10.1016/S0008-8846(98)00243-9

Prasetiyo, H. C., & Ariffanie, S. (2011). Hubungan molaritas larutan terhadap karakteristik beton geopolimer. http://thierry-handry.blogspot.com/2011/12/jurnal-penelitian-hubungan-molaritas.html

Prasetyo, G. B., Trinugroho, S., & Solikin, M. (2015). Tinjauan kuat tekan beton geopolymer dengan fly ash sebagai bahan pengganti semen. Naskah Publikasi. https://doi.org/10.1016/j.edurev.2009.12.002

Rangan, B. V. (2014). Fly ash-based geopolymer concrete fly ash-based geopolymer concrete. Geopolymer Cement and Concrete, 7982(May), 68–106. https://doi.org/10.1080/13287982.2005.11464946

Shah, K. . ., PROF. A. R. Parikh, P. A. R. P., & K.J.Parmar, K. J. P. (2012). Study of strength parameters and durability of fly ash based geopolymer concrete. Paripex - Indian Journal Of Research, 3(7), 207–210. https://doi.org/10.15373/22501991/july2014/91

Shekhovtsova, J., Kearsley, E. P., & Kovtun, M. (2014). Effect of activator dosage, water-to-binder-solids ratio, temperature and duration of elevated temperature curing on the compressive strength of alkali-activated fly ash cement pastes. In Journal of the South African Institution of Civil Engineering (Vol. 56, Issue 3, pp. 44–52).

Subekti, S. (2012). Ash paiton dan limbah tjiwi kimia menggunakan aktivator NaOH. 2(1).

Triwulan, J. J. E., & Damayanti, O. (2007). Analisa sifat mekanik beton geopolimer berbahan dasar fly ash. Jurnal Teknologi Dan Rekayasa Teknik Sipil “TORSI,†December 2007, 33–47.

Triwulan, M., Ekaputri, J. J., & Priyanka, N. F. (2017). The effect of temperature curing on geopolymer concrete. MATEC Web of Conferences, 97, 0–5. https://doi.org/10.1051/matecconf/20179701005

Wallah, S. (2014). Pengaruh perawatan dan umur terhadap kuat tekan beton geopolimer berbasis abu terbang. Jurnal Ilmiah Media Engineering, 4(1), 97126.

Weng, L., & Sagoe-Crentsil, K. (2007). Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I-Low Si/Al ratio systems. Journal of Materials Science. https://doi.org/10.1007/s10853-006-0820-2

Yuwono, Laras Sukmawati, A. W. (2017). Pengaruh suhu pemanasan terhadap kuat tekan mortar geopolymer berbahan dasar abu terbang dengan Molaritas 8 M Dan 10 M. In Rekayasa Teknik Sipil.

Published

2020-09-30

How to Cite

Panjaitan, P. E., & Herlina, L. (2020). Review Faktor - Faktor yang Mempengaruhi Karakteristik Kuat Tekan Beton Geopolimer. Jurnal Rekayasa Konstruksi Mekanika Sipil (JRKMS), 3(2), 65–79. https://doi.org/10.54367/jrkms.v3i2.858