Studi Stabilitas Lereng Clay Shale di Kalimantan dengan Menggunakan Metode Kesetimbangan Batas dan Pendekatan Probabilistik dan Deterministik

Authors

  • Ignatius Tommy Pratama Jurusan Teknik Sipil, Universitas Katolik Parahyangan

DOI:

https://doi.org/10.54367/jrkms.v4i2.1366

Keywords:

analisis kestabilan lereng, analisis probabilitas, clay shale, metode kesetimbangan batas

Abstract

Analisis deterministik dan probabilistik kestabilan lereng tanah clay shale di Kalimantan dilakukan di dalam studi ini dengan menggunakan metode kesetimbangan batas untuk mengestimasikan nilai faktor keamanan dan probabilitas kegagalan lereng sebelum dan sesudah pemasangan perkuatan lereng. Hasil analisis balik mengindikasikan bahwa longsoran translasi terjadi pada tanah clay shale dengan nilai kohesi efektif sebesar 1,5 kN/m2 dan nilai rata-rata sudut geser residu efektif berkisar antara 8,5o hingga 10,3o. Kemudian, penggunaan perkuatan lereng berupa barisan tiang pancang pipa baja dan cerucuk kayu dan penggalian sedalam 3 m dari permukaan tanah eksisting dapat meningkatkan faktor keamanan lereng menjadi 1,25. Hasil analisis probabilistik berbasis simulasi Monte-Carlo dengan jumlah simulasi yang bervariasi antara 2.000 hingga 20.000 simulasi menunjukkan bahwa penggunaan struktur perkuatan lereng dapat menurunkan nilai probabilitas kegagalan hingga ke nilai 0,05%-0,28%. Berdasarkan hasil analisis sensitivitas, elevasi muka air tanah memiliki pengaruh paling signifikan di dalam perhitungan faktor keamanan lereng clay shale.

Author Biography

Ignatius Tommy Pratama, Jurusan Teknik Sipil, Universitas Katolik Parahyangan

Dosen tetap Fakultas Teknik, Jurusan Teknik Sipil, Universitas Katolik Parahyangan.

References

Agam, M. W., Hashim, M. H. M., Murad, M. I., & Zabidi, H. (2016). Slope sensitivity analysis using Spencer’s Method in comparison with general limit Equilibrium method. Procedia Chemistry, 19, 651–658. https://doi.org/10.1016/j.proche.2016.03.066

Alonso, E. E. (1976). Risk analysis of slopes and its application to slopes in Canadian sensitive clays. Géotechnique, 26(3), 453–472. https://doi.org/10.1680/geot.1976.26.3.453

Bolton, M. D. (1987). Discussion: The strength and dilatancy of sands. Géotechnique, 37(4), 517. https://doi.org/10.1680/geot.1987.37.4.517

Budhu, M. (2010). Soil Mechanics and Foundations (3rd ed.). Wiley.

Duncan, J. M. (2000). Factors of safety and reliability in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 126(4), 307–316. https://doi.org/10.1061/(asce)1090-0241(2000)126:4(307)

Duncan, M. J., Wright, S. G., & Brandon, T. L. (2014). Soil strength and slope stability (2nd ed.). Wiley.

El-Ramly, H., Morgenstern, N. R., & Cruden, D. M. (2003). Probabilistic stability analysis of a tailings dyke on presheared clay-shale. Canadian Geotechnical Journal, 40(1), 192–208. https://doi.org/10.1139/t02-095

Gartung, E. (1986). Excavation in hard clays of the Keuper Formation. Symposium on Geotechnical Aspects of Stiff and Hard Clays (pp. 69-83).

GEO-SLOPE International Ltd. (2015). Stability modeling with SLOPE/W. GEO-SLOPE International Ltd.

Goh, A. T. C., Kulhawy, F. H., & Wong, K. S. (2008). Reliability assessment of basal-heave stability for braced excavations in clay. Journal of Geotechnical and Geoenvironmental Engineering, 134(2), 145–153. https://doi.org/10.1061/(asce)1090-0241(2008)134:2(145)

Gouw, T. L., & Gunawan, A. (2019). Slope stabilization by use of geosynthetics in clay shale formation. International Conference on Landslide and Slope Stability (pp. D1-1-D1-13).

Idris, M., Kamaldi, A., & Novan, A. (2019). Kekuatan tekan sejajar dan geser kayu ulin (Eusideroxylon Zwageri) di Kota Pekanbaru berdasarkan SNI 7973:2013. Jurnal Teknik, 13(1), 85–93. https://doi.org/10.31849/teknik.v13i1.2971

Irsyam, M., Susila, E., & Himawan, A. (2007). Slope failure of an embankment on clay shale at KM 97+500 of the Cipularang Toll Road and the selected solution. International Symposium on Geotechnical Engineering, Ground Improvement, and Geosynthetics for Human Security and Environmental Preservation (pp. 531-540).

Jefferies, M.G., & Davies, M.P. (1993). Use of CPTu to estimate equivalent SPT N60. Geotechnical Testing Journal, 16(4), 458. https://doi.org/10.1520/gtj10286j

Jitno, H., Lailatin, Pratiwi, F., & Satwikawati, N. L. (2019). Soil reinforcement of highway embankment on clay shale foundation. International Conference on Landslide and Slope Stability (pp. D7-1-D7-9).

Hsein Juang, C., Zhang, J., & Gong, W. (2015). Reliability-based assessment of stability of slopes. IOP Conference Series: Earth and Environmental Science, 26(1). https://doi.org/10.1088/1755-1315/26/1/012006

Lacasse, S., & Nadim, F. (1998). Risk and reliability in geotechnical engineering. Fourth International Conference on Case Histories in Geotechnical Engineering (pp. 1172-1192).

Badan Standardisasi Nasional Indonesia. Spesifikasi untuk Bangunan Gedung Baja Struktural (SNI 1729:2015).

Badan Standardisasi Nasional Indonesia. Persyaratan Perancangan Geoteknik (SNI 8460:2017).

Pratama, I. T., & Arif, A. Y. (2021). Analisis numerik perkuatan lereng dengan menggunakan barisan tiang pancang dan cerucuk pada tanah clay shale di Kalimantan. Simposium Nasional Teknologi Infrastruktur Abad ke-21 (pp. 629-635).

Robertson, P. K. (2009). Interpretation of cone penetration tests – A unified approach. Canadian Geotechnical Journal, 46(11), 1337–1355. https://doi.org/10.1139/t09-065

Robertson, P. K., & Cabal, K. L. (2010). Estimating soil unit weight from CPT. 2nd International Symposium on Cone Penetration Testing.

Spencer, E. (1973). Thrust line criterion in embankment stability analysis. Géotechnique, 23(1), 85–100. https://doi.org/10.1680/geot.1973.23.1.85

Tobutt, D. (1982). Monte Carlo Simulation methods for slope stability. Computers and Geosciences, 8(2), 199–208. https://doi.org/10.1016/0098-3004(82)90021-8

USACE. (1997). Engineering and design: Risk-based analysis in geotechnical engineering for support of planning studies. Engineer Technical Letter 1110-2-556. U.S. Army Corps of Engineers (USACE).

Wang, Y., Cao, Z., & Au, S. K. (2010). Efficient Monte Carlo Simulation of parameter sensitivity in probabilistic slope stability analysis. Computers and Geotechnics, 37(7–8), 1015–1022. https://doi.org/10.1016/j.compgeo.2010.08.010

Wolff, T. F. (1989). Pile capacity prediction using parameter functions. Predicted and Observed Axial Behavior of Piles: Results of a Pile Prediction Symposium (pp. 96-106).

Wu, S. H., Ou, C. Y., & Ching, J. (2014). Calibration of model uncertainties in base heave stability for wide excavations in clay. Soils and Foundations, 54(6), 1159–1174. https://doi.org/10.1016/j.sandf.2014.11.010

Wyllie, D. C., & Norrish, N. I. (1996). Rock Strength Properties and Their Measurement. Dalam Schuster, R.L., & Turner, A.K., Landslide: Investigation and Mitigation (hlm. 372-390). National Academy Press.

Zhou, X., Huang, W., Li, J., & Chen, D. (2020). Robust geotechnical design for soil slopes considering uncertain parameters. Mathematical Problems in Engineering, 2020, 1–11. https://doi.org/10.1155/2020/5190580

Published

2021-09-30

How to Cite

Pratama, I. T. (2021). Studi Stabilitas Lereng Clay Shale di Kalimantan dengan Menggunakan Metode Kesetimbangan Batas dan Pendekatan Probabilistik dan Deterministik. Jurnal Rekayasa Konstruksi Mekanika Sipil (JRKMS), 4(2), 103–113. https://doi.org/10.54367/jrkms.v4i2.1366

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.