Analisis Algoritma K-Means dalam Pengelompokkan Persebaran Covid-19 di Indonesia

Authors

  • Nurul Khasanah Fitriyani Universitas Amikom Yogyakarta
  • Ferian Fauzi Abdulloh

DOI:

https://doi.org/10.54367/means.v6i2.1372

Keywords:

Covid-19, Data Mining, K-Means, Indonesia

Abstract

Covid-19 or Coronavirus is a virus that is found in humans and animals. This virus can infect humans to cause various diseases such as flu, to serious diseases such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). In Indonesia, the spread of Covid-19 cases continues to increase and is evenly distributed in all provinces in Indonesia because of the fairly rapid spread due to the vast area in Indonesia, making it possible for grouping based on regions in Indonesia to be needed which will result in the center points of the spread of this Covid-19 case. This study aims to group Covid-19 data into a cluster using the K-Means Clustering Data Mining Algorithm. The Covid-19 data used in this study is Covid-19 data on July 6, 2021 which was taken from the official website of Kawal Covid-19 (KawalCovid-19.id). The attributes used are positive cases, recovered, and died. The clusters formed from the results of research using K-Means Clustering are 3 clusters with the first cluster consisting of 2 provinces, the second cluster 3 provinces, and for the third cluster 29 provinces. The cluster with the largest Covid-19 spread rate is cluster one. From this study, the accuracy was 91.176% and evaluated using the Davies-Bouldin Index yielded a fairly good cluster result with a value of 0.493371469.

References

Rizkiana Prima R., Y. A. 2020. Analisis Cluster Virus Corona (COVID-19) di Indoensia pada 2 Maret 2020 -12 April 2020 dengan Metode K-Means Clustering.https://www.researchgate.net/publication/342697385.

Wiyli Yustanti, N. R. 2020. Klastering Wilayah Kota/Kabupaten Berdasarkan Data Persebaran Covid-19 di Propinsi Jawa Timur dengan Meode K-Means. Journal Information Engineering and Education Technology Vol.4 No.1, ISSN 2549-869X.

Sukma Sindi, W. R. 2020. Analisis Algoritma K-Medoids Clustering dalam Pengelompokkan Penyebaran Covid-19 di Indonesia. Jurnal Teknologi Informasi Vol.4 No.1, ISSN 2580-7927.

Nayuni Dwitri, J. A. 2020. Penerapan Algoritma K-Means dalam Menentukan Tingkat Penyebaran Pandemi Covid-19 di Indonesia. Jurnal Teknologi Indormasi Vol.1 No.1, ISSN 2580-7927.

Idah Wahidah, M. A. 2020. Pandemik Covid-19: Analisis Perencanaan Pemerintah dan Masyarakat dalam Berbagai Upaya Pencegahan. Jurnal Manajemen dan Organisasi, 179-188.

Prasetyowati, E. 2017. DATA MINING Pengelompokan Data untuk Informasi dan Evaluasi. Pamekasan: Duta Media Publishing.

Anjar Wanto, M. N. 2020. Data Mining: Algoritmadan Implementasi. Medan: Yayasan Kita Menulis.

Roger S. Pressman. 2002. Rekayasa Perangkat Lunak Pendekatan Praktisi (Buku Satu). Yogyakarta: Penerbit ANDI.

Wani, M.A & Riyaz, R. 2017. A novel point density based validity index for clustering gene expression datasets. International Jounal of Data Mining and Bioinformatics 17(1), 66-84.

Kalita, A.B. (2016). Counting clsuters in twitter posts. Proceedings of the 2nd International Conference on Information Technology for Competitive, (pp. 85).

Published

2022-03-03

How to Cite

Fitriyani, N. K., & Abdulloh, F. F. (2022). Analisis Algoritma K-Means dalam Pengelompokkan Persebaran Covid-19 di Indonesia. MEANS (Media Informasi Analisa Dan Sistem), 6(2), 180–183. https://doi.org/10.54367/means.v6i2.1372

Issue

Section

Daftar Artikel

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.