Penerapan Decision Tree Algoritma C4.5 Dalam Penentuan Izin Pembongkaran Muatan Kapal

Authors

  • Jaka Kusuma Universitas Potensi Utama Medan
  • Abwabul Jinan Universitas Potensi Utama Medan
  • Zakarias Situmorang Universitas Katolik Santo Thomas Medan

DOI:

https://doi.org/10.54367/means.v7i1.1632

Keywords:

Data Mining, C4.5, Izin Pembongkaran Muatan Kapal

Abstract

Along with the increasing number of bulk cargoes that are dismantled every year at belawan port and for the creation of services in accordance with expectations, it is necessary to develop services in support of indonesia's logistics improvement readiness, especially in terms of demolition. Utilization of machine learning using the C4.5 algorithm can make it easier to conduct selection and classification of the feasibility of ships that get permission for demolition activities. The use of the C4.5 algorithm will produce a decision tree that can equalize the results of data mining, so that the information obtained from the data will be easier to identify in testing methods using the Orange Data Mining tool. The results obtained by the C4.5 algorithm in the form of a decision tree with an accuracy value of 84%, 90% precision and 84% recall.

References

Sulistiowati (2018). Tata Kelola Pelayaran Indonesia Kerangka Pengaturan Dan Kelembagaan Kegiatan Pelayaran Di Indonesia. 1st ed. Depok: Rajawali Pers, p.252.

Aditya, K., 2016. Analisis Kinerja Pelayanan Bongkar Muat Pada Terminal Jamrud Berdasarkan Model Sistem Antrian (Studi Kasus Pada Terminal Jamrud Pt. Pelabuhan Indonesia Iii (Persero) Cabang Tanjung Perak) (Doctoral dissertation, Universitas Brawijaya).

Buulolo, E., Silalahi, N. and Rahim, R., 2017. C4. 5 Algorithm To Predict the Impact of the Earthquake. Entropy (S), 1, p.1.

Noviyanto, N., 2020. Penerapan Data Mining dalam Mengelompokkan Jumlah Kematian Penderita COVID-19 Berdasarkan Negara di Benua Asia. Paradigma-Jurnal Komputer dan Informatika, 22(2), pp.183-188.

Kacung, S. and Santoso, B., 2018. Sistem Deteksi Dini Untuk Meningkatkan Performance Kelulusan Mahasiswa Dengan ID3.

Tanjung, D.Y.H., 2021. Optimalisasi Algoritma C4. 5 untuk Prediksi Kerusakan Mesin ATM. INFOSYS (INFORMATION SYSTEM) JOURNAL, 6(1), pp.12-21.

Nasrullah, A.H., 2021. Implementasi Algoritma Decision Tree Untuk Klasifikasi Produk Laris. Jurnal Ilmiah Ilmu Komputer Fakultas Ilmu Komputer Universitas Al Asyariah Mandar, 7(2), pp.45-51.

Published

2022-05-31

How to Cite

Kusuma, J., Jinan, A., & Situmorang, Z. (2022). Penerapan Decision Tree Algoritma C4.5 Dalam Penentuan Izin Pembongkaran Muatan Kapal. MEANS (Media Informasi Analisa Dan Sistem), 7(1), 72–76. https://doi.org/10.54367/means.v7i1.1632

Issue

Section

Daftar Artikel

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.