Kombinasi Algoritma K-Means Dan DBSCAN Dalam Identifikasi Anomali Pada Data Log Server
Keywords:
K-Means, DBSCAN, anomaly detection, clustering, server log dataAbstract
Detecting anomalies in server log data is a crucial element of information system management and security. This research seeks to develop a method for identifying anomalies by integrating two well-known clustering algorithms: K-Means and DBSCAN (Density-Based Spatial Clustering of Applications with Noise). K-Means is effective at partitioning data into clusters based on average distances, while DBSCAN excels at detecting anomalies or noise in datasets without a distinct cluster structure. In this study, K-Means is employed for initial clustering of server log data to reveal general patterns and group similar data. The results from K-Means clustering are then examined using DBSCAN to detect anomalies more accurately. Combining these two algorithms aims to enhance anomaly detection accuracy by leveraging the strengths of each approach. The research was performed on a server log dataset encompassing various server activities. The effectiveness of this combined approach was assessed by comparing its anomaly detection performance against the individual K-Means and DBSCAN methods, as well as other anomaly detection techniques. Experimental results indicate that the K-Means and DBSCAN combination successfully improves anomaly detection rates by reducing both false positives and false negatives compared to using each algorithm independently.References
Gustientiedina, et.al, 2019, "Penerapan Algoritma K-Means Untuk Clustering Data Obat-Obatan Pada RSUD Pekanbaru", Jurnal Nasional Teknologi dan Sistem Informasi, Vol 05, No. 01
Wahyu Sudrajat, et.al, 2022, "Penerapan Algoritma K-Means Clustering Untuk Pengelompokkan UMKM Menggunakan Rapidminer", Jurnal JUPITER, Vol. 14, No. 1
Rozi Kesuma Dinata, et.al, 2020, "Analisis K-Means Clustering Pada Data Sepeda Motor", Informatic Journal, Vol. 5, No. 1
Devi Fitrianah, et.al, 2021, "Implementasi Algoritma DBScan Dalam Pengambilan Data Menggunakan Scatterplot", Jurnal Techno Xplore, Vol. 6, No. 2
Betha Nurina Sari, et.al, 2019, “Penerapan Clustering DBScan Untuk Pertanian Padi di Kabupaten Karawang”, Jurnal JIKO, Vol. 4, No. 1
F. Pangestu, et.al, 2023, “Penerapan Algoritma K-Means Untuk Mengklasifikasi Data Obat”, Jurnal SISFOKOM, Vol. 12, No. 1
Mustofa, 2019, “Penerapan Algoritma K-Means Clustering Pada Karakter Permainan Multiplayer Online Battle Arena”, Jurnal Informatika, Vol. 6, No. 2
B.S. Ashari, et.al, 2019, “Perbandingan Kinerja K-Means dengan DBScan Untuk Metode Clustering data Penjualan Online Retail”, Jurnal Siliwangi, Vol. 5, No. 2
T.I. Hermanto, et.al, 2020, “Analisis Data Sebaran Bandwidth Menggunakan Algoritma DBScan Untuk Menentukan Tingkat Kebutuhan Bandwidth Di Kabupaten Purwakarta”, Jurnal RABIT, Vol. 5, No. 2
Mustika Putri, et.al, 2021, “Komparasi DBSCAN Dan K-Means Clustering Pada Pengelompokkan Status Desa di Jawa Tengah Tahun 2020”, Jurnal Matematika, Statistika, Vol. 17, No. 3
D. P. Isnarwaty, et.al, 2019, “Text Clustering Pada Akun Twitter Layanan Ekspedisi JNE, J&T dan Pos Indonesia Menggunakan Metode Density- Based Spatial Clustering Of Applications With Noise (DBSCAN) Dan K-Means
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rico Puji Irawan, Sony Bahagia Sinaga
This work is licensed under a Creative Commons Attribution 4.0 International License.