Penerapan Algoritma K-Means Dalam Klasterisasi Penjualan Obat Pada Apotek Kharisma Farma

Authors

  • Prastyadi Wibawa Rahayu Universitas Dhyana Pura
  • Putu Wida Gunawan Universitas Dhyana Pura
  • Gerson Feoh Universitas Dhyana Pura
  • I Gede Pramana Ade Saputra Universitas Dhyana Pura

Keywords:

Analysis, Cluster, Drug, K-Means, Pharmacy

Abstract

Kharisma Farma Pharmacy sells various over-the-counter medicines, herbals, patents, external medicines, syrups, generics and other health devices. The average drug sales transaction in 2024 is 150-250 transactions per month. The results of interviews with the pharmacy, drug sales data are only used for calculating gross, net and archive profits without ever being analyzed, even though the data can identify sales trends that can be used to ensure product availability according to demand so that the pharmacy can optimize stock and reduce the risk of shortages and excess stock of drugs. The analysis process uses the K-Means algorithm. The results of applying the K-Means Algorithm can determine the trend of drug sales in June and July 2024 into 5 clusters, cluster 1 (very popular) with 16 drug items, cluster 2 (popular) with 5 drug items (quite popular), cluster 3 with 5 drug items, cluster 4 (less popular) with 9 drug items, cluster 5 (very less popular) with 16 drug items.

References

G. Y. Andri and Djuariah, “Bentuk Badan Usaha Apotek Ditinjau dari Hukum Perusahaan,” Cirebon, Aug. 2021. doi: http://dx.doi.org/10.33603/responsif.v12i2.5876.

A. Mukaddas and M. Sulaiman Zubair, “Apotek Pendidikan Tadulako: Implementasi Pharmaceutical Care Secara Profesional pada Lingkup Farmasi Komunitas,” Desember, vol. 24, no. 4, p. 865, 2018, [Online]. Available: http://jurnal.unimed.ac.id/2012/index.php/jpkm/article/view/11984

P. W. Rahayu, I. N. Bernadus, and A. I. Datya, “Penerapan Data Mining Dalam Mengetahui Pola Transaksi Pembelian Obat Menggunakan Algoritma Apriori Di Apotek Kharisma Farma Tiga,” Jurnal Informatika dan Komputer, vol. 44, no. 1, pp. 44-55, 2024, doi: 10.35508/jicon.v12i1.13154.

C. Leto, D. Sujana, V. S. Windyasari, and M. Ridwan, Konsep Data Mining dan Penerapan, 1st ed., vol. 1. Bandar Lampung: CV. Keranjang Teknologi Media, 2023, 2023.

P. Chyan et al., “Pengantar Machine Learning,” Sumtera, Jan. 2024.

A. Prahendratno et al., Business Intelegent (Pengantar Business Intelligence dalam Bisnis), no. June. 2023.

A. Sulistiyawati and E. Supriyanto, “Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan,” Jurnal TEKNO KOMPAK, vol. 15, no. 2, pp. 25-36, 2021.

Bomanthara and N. H. R.M., “Implementasi Metode K-Means Clustering Untuk Menentukan Tingkat Peminatan Konsumen Terhadap Type Smartphone Di Tio Cell Dan Tio Cell 2,” Palembang, Apr. 2023. Accessed: Oct. 16, 2023. [Online]. Available: https://jurnal.polsri.ac.id/index.php/jupiter/article/download/5191/2585/16272

P. W. Rahayu and I. N. Bernadus, “Penerapan Metode Single Exponential Smoothing Pada Peramalan Penerimaan Siswa Baru,” Jurnal Ilmu Komputer dan Bisnis, vol. 12, no. 2a, pp. 122-127, Dec. 2021, doi: 10.47927/jikb.v12i2a.204.

Downloads

Published

2025-12-28

How to Cite

Prastyadi Wibawa Rahayu, Putu Wida Gunawan, Gerson Feoh, & I Gede Pramana Ade Saputra. (2025). Penerapan Algoritma K-Means Dalam Klasterisasi Penjualan Obat Pada Apotek Kharisma Farma. MEANS (Media Informasi Analisa Dan Sistem), 10(2), 104–109. Retrieved from https://ejournal.ust.ac.id/index.php/Jurnal_Means/article/view/4192

Issue

Section

Daftar Artikel