Klasifikasi Gambar Aksara Jawa Menggunakan Optimalisasi Parameter SVM dengan Kernel Cosine

Authors

  • Aji Priyambodo Institut Teknologi dan Bisnis Semarang
  • Prihati Institut Teknologi dan Bisnis Semarang

Keywords:

Javanese Script, Support Vector Machine, Cosine Similarity, Histogram of Oriented Gradients, Parameter Optimization

Abstract

Pattern recognition of Javanese script (Hanacaraka) plays a vital role in cultural preservation through digital technology. This study aims to develop a classification model for Javanese script images using Support Vector Machine (SVM) with a Cosine similarity kernel, supported by parameter optimization to enhance accuracy. A dataset of 4,385 images underwent preprocessing and feature extraction using Histogram of Oriented Gradients (HOG). SVM parameter optimization via GridSearchCV resulted in a significant accuracy improvement. The proposed model achieved a 99.84% accuracy, outperforming previous methods such as CNN-SVM and DCNN. This study demonstrates the effectiveness of Cosine similarity in Javanese script recognition and contributes to the advancement of machine learning-based classification systems.

References

Y. Sugianela and N. Suciati, “EKSTRAKSI FITUR PADA PENGENALAN KARAKTER AKSARA JAWA BERBASIS HISTOGRAM OF ORIENTED GRADIENT,” JUTI J. Ilm. Teknol. Inf., vol. 17, no. 1, p. 64, Mar. 2019, doi: 10.12962/j24068535.v17i1.a819.

D. U. K. Putri, D. N. Pratomo, and Azhari, “Hybrid convolutional neural networks-support vector machine classifier with dropout for Javanese character recognition,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 21, no. 2, pp. 346–353, 2023, doi: 10.12928/TELKOMNIKA.v21i2.24266.

R. Hajizadeh, “Unconstrained neighbor selection for minimum reconstruction error-based K-NN classifiers,” Complex Intell. Syst., vol. 9, no. 5, pp. 5715–5730, Oct. 2023, doi: 10.1007/s40747-023-01027-1.

Muljono, S. A. Wulandari, H. Al Azies, M. Naufal, W. A. Prasetyanto, and F. A. Zahra, “Breaking Boundaries in Diagnosis: Non-Invasive Anemia Detection Empowered by AI,” IEEE Access, vol. 12, no. November 2023, pp. 9292–9307, 2024, doi: 10.1109/ACCESS.2024.3353788.

M. Varan, J. Azimjonov, and B. Macal, “Enhancing Prostate Cancer Classification by Leveraging Key Radiomics Features and Using the Fine-Tuned Linear SVM Algorithm,” IEEE Access, vol. 11, no. August, pp. 88025–88039, 2023, doi: 10.1109/ACCESS.2023.3306515.

K. Endo, M. Tanaka, and M. Okutomi, “CNN-Based Classification of Degraded Images Without Sacrificing Clean Images,” IEEE Access, vol. 9, pp. 116094–116104, 2021, doi: 10.1109/ACCESS.2021.3105957.

A. Susanto, I. U. W. Mulyono, C. A. Sari, E. H. Rachmawanto, and R. R. Ali, “Javanese Character Recognition Based on K-Nearest Neighbor and Linear Binary Pattern Features,” Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, no. 3, Sep. 2022, doi: 10.22219/kinetik.v7i3.1491.

Aji Priyambodo and Prihati Prihati, “eval_UASI EKSTRAKSI FITUR KLASIFIKASI TEKS UNTUK PENINGKATAN AKURASI KLASIFIKASI MENGGUNAKAN NAIVE BAYES,” Elkom J. Elektron. dan Komput., vol. 13, no. 1, pp. 159–175, Jul. 2020, doi: 10.51903/elkom.v13i1.277.

Irham Ferdiansyah Katili, Mochamad Arief Soeleman, and Ricardus Anggi Pramunendar, “Character Recognition of Handwriting of Javanese Character Image using Information Gain Based on the Comparison of Classification Method,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 7, no. 1, pp. 193–200, Feb. 2023, doi: 10.29207/resti.v7i1.4488.

F. T. Anggraeny, Y. V. Via, and R. Mumpuni, “Image preprocessing analysis in handwritten Javanese character recognition,” Bull. Electr. Eng. Informatics, vol. 12, no. 2, pp. 860–867, Apr. 2023, doi: 10.11591/eei.v12i2.4172.

M. A. Rasyidi, T. Bariyah, Y. I. Riskajaya, and A. D. Septyani, “Classification of handwritten Javanese script using random forest algorithm,” Bull. Electr. Eng. Informatics, vol. 10, no. 3, pp. 1308–1315, Jun. 2021, doi: 10.11591/eei.v10i3.3036.

A. Susanto, I. U. Wahyu Mulyono, C. Atika Sari, E. Hari Rachmawanto, D. R. Ignatius Moses Setiadi, and M. K. Sarker, “Handwritten Javanese script recognition method based 12-layers deep convolutional neural network and data augmentation,” IAES Int. J. Artif. Intell., vol. 12, no. 3, p. 1448, Sep. 2023, doi: 10.11591/ijai.v12.i3.pp1448-1458.

M. Mohammadi, M. Eftekhari, and A. Hassani, “Image-Text Connection: Exploring the Expansion of the Diversity Within Joint Feature Space Similarity Scores,” IEEE Access, vol. 11, no. October, pp. 123209–123222, 2023, doi: 10.1109/ACCESS.2023.3327339.

H. Zhang and Y. Zhang, “An Improved Sparrow Search Algorithm for Optimizing Support Vector Machines,” IEEE Access, vol. 11, no. January, pp. 8199–8206, 2023, doi: 10.1109/ACCESS.2023.3234579.

Y. Qiu, R. Li, and X. Zhang, “Simultaneous SVM Parameters and Feature Selection Optimization Based on Improved Slime Mould Algorithm,” IEEE Access, vol. 12, no. October 2023, pp. 18215–18236, 2024, doi: 10.1109/ACCESS.2024.3351943.

B. Shah, A. Gupta, and S. Paul, “A PSO-SVM-Based Change Detection Algorithm for Remote Sensing Optical Images,” IEEE Access, vol. 12, no. March, pp. 54229–54237, 2024, doi: 10.1109/ACCESS.2024.3387940.

A. Delilbasic, B. Le Saux, M. Riedel, K. Michielsen, and G. Cavallaro, “A Single-Step Multiclass SVM Based on Quantum Annealing for Remote Sensing Data Classification,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 17, pp. 1434–1445, 2024, doi: 10.1109/JSTARS.2023.3336926.

A. Lange, D. Smolyakov, and E. Burnaev, “Sequential Minimal Optimization Algorithm for One-Class Support Vector Machines With Privileged Information,” IEEE Access, vol. 11, no. October, pp. 128106–128124, 2023, doi: 10.1109/ACCESS.2023.3331685.

R. P. Nugroho, “Hanacaraka.” Accessed: Mar. 01, 2024. [Online]. Available: https://www.kaggle.com/datasets/vzrenggamani/hanacaraka, https://www.kaggle.com/datasets/vzrenggamani/hanacaraka

S. Ghaffari, P. Soleimani, K. F. Li, and D. W. Capson, “Analysis and Comparison of FPGA-Based Histogram of Oriented Gradients Implementations,” IEEE Access, vol. 8, pp. 79920–79934, 2020, doi: 10.1109/ACCESS.2020.2989267.

I. T. Ahmed, B. T. Hammad, and N. Jamil, “A Comparative Performance Analysis of Malware Detection Algorithms Based on Various Texture Features and Classifiers,” IEEE Access, vol. 12, no. November 2023, pp. 11500–11519, 2024, doi: 10.1109/ACCESS.2024.3354959.

R. Rofik, R. A. Hakim, J. Unjung, B. Prasetiyo, and M. A. Muslim, “Optimization of SVM and Gradient Boosting Models Using GridSearchCV in Detecting Fake Job Postings,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 23, no. 2, pp. 419–430, Mar. 2024, doi: 10.30812/matrik.v23i2.3566.

Published

2024-12-24

How to Cite

Priyambodo, A. ., & Prihati , P. . (2024). Klasifikasi Gambar Aksara Jawa Menggunakan Optimalisasi Parameter SVM dengan Kernel Cosine . MEANS (Media Informasi Analisa Dan Sistem), 2(2), 137–142. Retrieved from https://ejournal.ust.ac.id/index.php/Jurnal_Means/article/view/4357

Issue

Section

Daftar Artikel

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.