Heterogeneous Multiple Classifiers Mengunakan C4.5, K-Nearest Neighbor dan Naïve Bayes untuk Menentukan Tingkat Pembaharuan Polis Asuransi Jiwa

Authors

  • Reni Utami Universitas Dian Nusantara
  • Irfan Nurdiansyah Universitas Dian Nusantara

Keywords:

Heterogeneous Multiple Classifiers, C4.5, K-Nearest Neighbor, Naïve Bayes, Majority Voting

Abstract

At a time when the insurance business is increasingly competitive, it requires insurance companies to have innovations in increasing the number of customers. With information from existing customer data, insurance companies can make decisions in implementing company strategies, including determining insurance customer decisions on the sustainability of life insurance policies. Data mining can form a pattern or create a trait of business behavior that is useful for decision making. In this research a Heterogeneous Multiple Classifiers prediction model was built using Majority Voting by combining C4.5, K-Nearest Neighbor and Naïve Bayes to determine the renewal rate of life insurance policies. The Heterogeneous Multiple Classifiers model that was built produced an accuracy value of 94.61%,  precision value of 95.20%,  recall value of 94.60% and an F-Measure value of 94.60%. The performance value generated by the Heterogeneous Multiple Classifiers based prediction model is higher than the performance value of the Single Classifier based prediction model. It is hoped that this method can increase the income of life insurance companies, for example by offering a promotional program for insurance policy renewal to customers who are predicted to extend or not to extend their insurance policies.

References

Avegad, J. 2019. Data Mining Klasifikasi Untuk Memprediksi Status Keberlanjutan Polis

Bashir, S, dkk. 2014. Heterogeneous classifiers fusion for dynamic breast cancer diagnosis using weighted vote based ensemble

Chaira, LM, dkk. 2016. Pemilihan Jenis Asuransi Berdasarkan Demografi Calon Pemegang Polis Dengan Metode Naïve Bayes Classifie

Santosa, B. (2007). Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu

Fadhillah, M., Sari, H. L. ., & Elfianty, L. . (2023). Analisis dan Penerapan Algoritma Naïve Bayes untuk Klasifikasi Penyakit Gingivitis. MEANS (Media Informasi Analisa Dan Sistem), 8(2), 222-226.

Harahap, S. M. ., & Kurniawan, R. . (2024). Analisis Sentimen Komentar Youtube Terhadap Food Vlogger Dengan Menggunakan Metode Naïve Bayes. MEANS (Media Informasi Analisa Dan Sistem), 9(1), 87-96.

Published

2024-12-27

How to Cite

Utami, R. ., & Nurdiansyah, I. . (2024). Heterogeneous Multiple Classifiers Mengunakan C4.5, K-Nearest Neighbor dan Naïve Bayes untuk Menentukan Tingkat Pembaharuan Polis Asuransi Jiwa. MEANS (Media Informasi Analisa Dan Sistem), 2(2), 161–165. Retrieved from https://ejournal.ust.ac.id/index.php/Jurnal_Means/article/view/4492

Issue

Section

Daftar Artikel

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.