Heterogeneous Multiple Classifiers Mengunakan C4.5, K-Nearest Neighbor dan Naïve Bayes untuk Menentukan Tingkat Pembaharuan Polis Asuransi Jiwa
Keywords:
Heterogeneous Multiple Classifiers, C4.5, K-Nearest Neighbor, Naïve Bayes, Majority VotingAbstract
At a time when the insurance business is increasingly competitive, it requires insurance companies to have innovations in increasing the number of customers. With information from existing customer data, insurance companies can make decisions in implementing company strategies, including determining insurance customer decisions on the sustainability of life insurance policies. Data mining can form a pattern or create a trait of business behavior that is useful for decision making. In this research a Heterogeneous Multiple Classifiers prediction model was built using Majority Voting by combining C4.5, K-Nearest Neighbor and Naïve Bayes to determine the renewal rate of life insurance policies. The Heterogeneous Multiple Classifiers model that was built produced an accuracy value of 94.61%, precision value of 95.20%, recall value of 94.60% and an F-Measure value of 94.60%. The performance value generated by the Heterogeneous Multiple Classifiers based prediction model is higher than the performance value of the Single Classifier based prediction model. It is hoped that this method can increase the income of life insurance companies, for example by offering a promotional program for insurance policy renewal to customers who are predicted to extend or not to extend their insurance policies.References
Avegad, J. 2019. Data Mining Klasifikasi Untuk Memprediksi Status Keberlanjutan Polis
Bashir, S, dkk. 2014. Heterogeneous classifiers fusion for dynamic breast cancer diagnosis using weighted vote based ensemble
Chaira, LM, dkk. 2016. Pemilihan Jenis Asuransi Berdasarkan Demografi Calon Pemegang Polis Dengan Metode Naïve Bayes Classifie
Santosa, B. (2007). Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu
Fadhillah, M., Sari, H. L. ., & Elfianty, L. . (2023). Analisis dan Penerapan Algoritma Naïve Bayes untuk Klasifikasi Penyakit Gingivitis. MEANS (Media Informasi Analisa Dan Sistem), 8(2), 222-226.
Harahap, S. M. ., & Kurniawan, R. . (2024). Analisis Sentimen Komentar Youtube Terhadap Food Vlogger Dengan Menggunakan Metode Naïve Bayes. MEANS (Media Informasi Analisa Dan Sistem), 9(1), 87-96.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reni Utami, Irfan Nurdiansyah
This work is licensed under a Creative Commons Attribution 4.0 International License.