Pengembangan Sistem Peramalan Permintaan Menggunakan Algoritma Support Vector Regression Untuk Optimalisasi Safety Stock Berbasis Web (Studi Kasus: JG Motor Sukabumi)

Authors

  • Amerjid Ghulamson Fatalifi Universitas Nusa Putra
  • Somantri Universitas Nusa Putra
  • Ivana Lucia Kharisma Universitas Nusa Putra

Keywords:

Support Vector Regression, Safety Stock, Web-Based System, Black Box Testing

Abstract

This study aims to develop a web-based system utilizing Support Vector Regression (SVR) to predict motor vehicle spare part demand and optimize safety stock levels at JG Motor Sukabumi. The inventory management faces challenges such as fluctuating demand, supply delays, and overstock/stockout risks. To address these issues, SVR is chosen for its ability to handle non-linear and complex data, providing more accurate predictions than conventional methods. This research employs a descriptive quantitative approach with semi-experimental methods to test the SVR model's effectiveness and web-based system validity. The system features monthly demand prediction, safety stock calculation, historical data visualization, and interactive analytical reports. Development involves user requirement analysis, two-year historical sales data collection, data preprocessing, SVR model training with parameter optimization, and Flask-based integration. Black Box Testing ensures primary functions, such as input validation, prediction processing, and stock recommendation outputs, operate correctly. Results indicate the SVR model achieves high accuracy, reflected by low Mean Absolute Error (MAE) values. The web-based system is user-friendly for managers and operational staff to monitor demand and manage inventory efficiently. Moreover, the system supports strategic decision-making, enhancing JG Motor Sukabumi's operational efficiency and competitiveness in the automotive market.

References

S. D. Negara dan A. S. Hidayat, “Indonesia’s Automotive Industry,” J. Southeast Asian Econ., vol. 38, no. 2, hal. 166-186, Okt 2021, [Daring]. Tersedia pada: https://www.jstor.org/stable/27041371

M. Arifin, S. Priadana, dan S. Sunar, “Factors Affecting The Increasing Competitiveness of The Automotive Industry Sector in Promoting Sustainable Indonesian Economic Growth,” Proc. 3rd Int. Conf. Law, Soc. Sci. Econ. Educ. ICLSSEE 2023, 6 May 2023, Salatiga, Cent. Java, Indones., 2023, doi: 10.4108/eai.6-5-2023.2333565.

Irwan Ibrahim, “Penguatan Industri Kendaraan Bermotor,” Maj. Ilm. Pengkaj. Ind. J. Ind. Res. Innov., vol. 8, no. 2 SE-Articles, hal. 47-54, Sep 2023, doi: 10.29122/mipi.v8i2.3647.

S. Cissé, J. Xue, dan M. Sali, “Research on the Comparison between the Different Policies by Service Level and Inventory Level Performance of Auto Parts in N.A.C.C. (North Automobile Components Company),” J. Manag. Sci. & Eng. Res., 2022, doi: 10.30564/jmser.v5i2.4593.

Zhengyu, C. Wang, dan Z. Zhang, “Deep Learning Algorithms for Automotive Spare Parts Demand Forecasting,” 2021 Int. Conf. Comput. Inf. Sci. Artif. Intell., hal. 358-361, 2021, doi: 10.1109/cisai54367.2021.00075.

Sukondar Nasution dan M. Fakhriza, “Aplikasi Persediaan Stok Suku Cadang Sparepart Menggunakan Metode Buffer Berbasis Android,” J. Ilm. BETRIK, vol. 15, no. 02 AGUSTUS SE-Articles, hal. 157-166, Agu 2024, doi: 10.36050/betrik.v15i02 AGUSTUS.296.

S. G dan P. N., “Machine Learning in Demand Forecasting - A Review,” EngRN Oper. Res., 2020, doi: 10.2139/ssrn.3733548.

S. B. Dalimunthe, R. Ginting, dan S. Sinulingga, “The Implementation Of Machine Learning In Demand Forecasting: A Review Of Method Used In Demand Forecasting With Machine Learning,” AQUACOASTMARINE J. Aquat. Fish. Sci., vol. 25, no. 1, hal. 41-49, 2023, doi: 10.32734/jsti.v25i1.9290.

P. Choudhury, R. T. Allen, dan M. G. Endres, “Machine learning for pattern discovery in management research,” Strateg. Manag. J., vol. 42, no. 1, hal. 30-57, 2021, doi: 10.2139/ssrn.3518780.

M. Kharfan, V. W. K. Chan, dan T. Firdolas Efendigil, “A data-driven forecasting approach for newly launched seasonal products by leveraging machine-learning approaches,” Ann. Oper. Res., vol. 303, no. 1, hal. 159-174, 2021, doi: 10.1007/s10479-020-03666-w.

Y. Zhang, X. Tao, Z. Cui, Y. Duan, dan J. Lu, “Safety Stock Forecasting based on Materials Correlation,” 2023 Int. Conf. Wirel. Commun. Signal Process., hal. 56-61, 2023, doi: 10.1109/WCSP58612.2023.10405214.

A. Ranjith dan V. Pillai, “Determination of Safety Stock in Divergent Supply Chains with Non-stationary Demand Process,” hal. 63-73, 2020, doi: 10.1007/978-981-15-5519-0_6.

J. N. C. Gonçalves, M. Sameiro Carvalho, dan P. Cortez, “Operations research models and methods for safety stock determination: A review,” Oper. Res. Perspect., vol. 7, hal. 100164, 2020, doi: 10.1016/j.orp.2020.100164.

R. C. Hardika, N. A. Setiawan, dan I. Hidayah, “Prediksi Safety Stock Pada Layanan Penyewaan Sepeda Menggunakan Metode Support Vector Regression dan Seasonal Autoregressive Integrated Moving Average,” Universitas Gadjah Mada, 2024.

R. Nianogo, T. Benmarhnia, dan S. O’Neill, “A comparison of quasi-experimental methods with data before and after an intervention: an introduction for epidemiologists and a simulation study.,” Int. J. Epidemiol., 2023, doi: 10.1093/ije/dyad032.

M. L. Maciejewski, “Quasi-experimental design,” Biostat. Epidemiol., vol. 4, no. 1, hal. 38-47, 2020.

Published

2025-06-07

How to Cite

Fatalifi, A. G. ., Somantri, S. ., & Kharisma, I. L. . (2025). Pengembangan Sistem Peramalan Permintaan Menggunakan Algoritma Support Vector Regression Untuk Optimalisasi Safety Stock Berbasis Web (Studi Kasus: JG Motor Sukabumi). MEANS (Media Informasi Analisa Dan Sistem), 10(1), 1–10. Retrieved from https://ejournal.ust.ac.id/index.php/Jurnal_Means/article/view/4504

Issue

Section

Daftar Artikel

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.