Implementasi K-means untuk Clustering pada Industri Non-Agro di Jawa Tengah

Authors

  • Rafif Femas Ervanto niversitas Pembangunan Jaya
  • Safrizal Abdurahman Universitas Pembangunan Jaya

Keywords:

K-Means, Clustering, KDD, Market Segmentation, Central Java

Abstract

This study aims to segment the non-agro industry in Central Java Province using the K-Means Clustering method. The approach used refers to the Knowledge Discovery in Database (KDD) stages, which include data selection, preprocessing, transformation, data mining, and interpretation/evaluation. Data were obtained from the Central Java Open Data portal, with variables used including district/city, industry type, business scale, marketing reach, and energy use. The preprocessing stage was carried out through data cleaning, integration of several regional files, and normalization using StandardScaler. The data mining process was carried out using the K-Means algorithm and the determination of the optimal number of clusters using the Elbow Method. The results of the study indicate the formation of several clusters that describe market segmentation patterns in the non-agro industry based on similarities in operational characteristics between regions in Central Java.

References

J. Jtik, J. Teknologi, R. Aryasatya, and V. Lusiana, “Penentuan Klustering Indeks Pembangunan Manusia Provinsi Jawa Tengah dengan Metode K-Means Berbasis Web,” vol. 8, no. 1, 2024.

M. R. Fadillah, M. R. Ardiansyah, R. Junaidi, and F. Fauzi, “Penerapan Clustering dalam Mengelompokkan Kabupaten / Kota Berdasarkan Indikator IPM di Jawa Tengah,” vol. 3, no. 3, pp. 674–685, 2025.

R. S. Hidayat, M. R. Muttaqin, and D. Irmayanti, “PENGELOMPOKAN DAERAH RAWAN BENCANA DI JAWA TENGAH MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING,” vol. 8, no. 5, pp. 10035–10042, 2024.

I. A. Nikmatun, U. Diponegoro, I. Waspada, and U. Diponegoro, “IMPLEMENTASI DATA MINING UNTUK KLASIFIKASI MASA STUDI MAHASISWA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR,” vol. 10, no. 2, pp. 421–432, 2019.

P. S. Statistika and U. I. Indonesia, “Implementasi K-Means Cluster Analysis untuk Mengelompokkan Kabupaten / Kota Berdasarkan Data Kemiskinan di Provinsi Jawa Tengah Tahun 2022,” vol. 3, no. 2, pp. 317–329, 2023.

A. F. Nashrullah, R. D. Mahardhika, N. R. Rusdiyanto, and S. Shella, “Klasterisasi Produktifitas Daerah di Jawa Tengah Berdasarkan Ketenagakerjaan Menggunakan K-Means dan Average Linkage,” vol. 7, no. 2, pp. 138–149, 2025.

Y. Asyfani, I. M. Nur, I. F. Amri, and N. Yunanita, “Pengelompokan Kabupaten / Kota di Jawa Tengah Berdasarkan Kepadatan Penduduk Menggunakan Metode Hierarchical Clustering,” vol. 2, no. 1, pp. 1–8, 2024.

M. U. Yanuar, “Metode K-Means Clustering untuk Pengelompokan Kabupaten / Kota dalam Upaya Pengendalian Tingkat Inflasi di Pulau Jawa dan Sumatera K-Means Clustering Method for District / City Grouping in Effort to Control Inflation Rates in Java,” vol. 1, pp. 29–42, 2022.

Downloads

Published

2026-01-06

How to Cite

Rafif Femas Ervanto, & Safrizal Abdurahman. (2026). Implementasi K-means untuk Clustering pada Industri Non-Agro di Jawa Tengah . MEANS (Media Informasi Analisa Dan Sistem), 10(2), 119–125. Retrieved from https://ejournal.ust.ac.id/index.php/Jurnal_Means/article/view/5646

Issue

Section

Daftar Artikel