Implementasi Metode Profile Matching untuk Penentuan Mahasiswa Berprestasi
DOI:
https://doi.org/10.54367/means.v5i1.752Keywords:
Profile Matching, SPK, Student achievementAbstract
Decision support systems developed at the beginning of the era of distributed computing and began to develop in the 1960-1970s, as a result of a number of other factors: hadware and software technology, research efforts by academics from universities, began to grow awareness of the support of a decision and the desire to obtain better information. In this study, a case will be raised, which is looking for the best alternative based on student competence in the "XYZ" educational institution by applying the profile matching method. This method was chosen because it is able to select the best alternative from the aspects of existing criteria. The study was conducted to find the value of weight for each aspect, such as examples of academic aspects and non-academic aspects of students, then the ranking process of selected prospective students who have been selected, and the output of the application can help decision makers in choosing alternative students who excel.References
T. Limbong, “Peran dan Fungsi Komputer dalam Mendukung Prestasi Akademik Mahasiswa STMIK Budi Darma Medan,†Inf. dan Teknol. Ilm., vol. 3, no. 1, pp. 138–143, 2014.
R. Umar, A. Fadlil, and Y. Yuminah, “Sistem Pendukung Keputusan dengan Metode AHP untuk Penilaian Kompetensi Soft Skill Karyawan,†Khazanah Inform. J. Ilmu Komput. dan Inform., vol. 4, no. 1, p. 27, 2018, doi: 10.23917/khif.v4i1.5978.
“Students Major Determination Decision Support Systems Using Profile Matching Method with SMS Gateway Implementation,†J. Sains Dan Mat., vol. 23, no. 1, pp. 14–24, 2015.
Kusrini, Konsep dan Aplikasi Sistem Pendukung Keputusan. 2007.
T. Limbong et al., Sistem Pendukung Keputusan : Metode dan Implementasi. Medan: Yayasan Kita Menulis, 2020.
J. Sistem Informasi, S. Tinggi Manajemen Informatika, and T. Komputer Surabaya, “SISTEM PENDUKUNG KEPUTUSAN PEMBERIAN BEASISWA MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING DI UNIVERSITAS PANCA MARGA PROBOLINGGO 1) Fery Romidhoni Eprilianto 2) Tri Sagirani 3) Tan Amelia.â€
M. Ridwan, H. Suyono, and M. Sarosa, “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,†Eeccis, vol. 7, no. 1, pp. 59–64, 2013, doi: 10.1038/hdy.2009.180.
D. Nofriansyah and S. Defit, Multi Criteria Decision Making (MCDM) pada Sistem Pendukung Keputusan. Deepublish, 2017.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 MEANS (Media Informasi Analisa dan Sistem)
This work is licensed under a Creative Commons Attribution 4.0 International License.