Penggunaan Model Klaster K-Means Dan Klasifikasi KNN Untuk Identifikasi Pengetahuan Matematika Mahasiswa
Keywords:
Classification, KNN, Cluster, K-MEANS, Mathematics_knowledgeAbstract
Students' mathematical knowledge is an important factor that needs to be considered in the learning process majoring in Informatics Engineering. Students who have low mathematical knowledge will definitely have difficulty calculating and applying the algorithms used to solve programming and computing problems. The weaknesses that these students have can become obstacles to the future. By knowing students' mathematical knowledge, the learning process does not have to be adjusted to the student's level of knowledge, but further action is needed to increase students' mathematical knowledge. One way to find out students' mathematical knowledge is to classify students' mathematical knowledge. Classification of students' mathematical knowledge can be done using a very popular method, namely the K-Nearest Neighbor (KNN) method. However, in order for classification to be carried out, grouping must be carried out first to form classes from the results of grouping mathematical knowledge data. The grouping of students' mathematical knowledge data was carried out using the K-MEANS method. Data on students' mathematical knowledge was taken based on course grades for calculus 1, applied physics, calculus 2, statistics and probability, and discrete mathematics. The grades from several of these courses will be processed using K-MEANS and form three groups of mathematical knowledge, namely slow, sufficient, and fast. Thus, it was concluded that to determine the classification of slow, sufficient, and fast mathematical knowledge of students majoring in informatics engineering, it was carried out using the KNN method, but first the data was grouped using the KMEAN method.References
M. Z. bin Mohamed, R. Hidayat, N. N. binti Suhaizi, N. binti M. Sabri, M. K. H. bin Mahmud, and S. N. binti Baharuddin, “Artificial intelligence in mathematics education: A systematic literature review,” International Electronic Journal of Mathematics Education, vol. 17, no. 3, p. em0694, Jun. 2022, doi: 10.29333/iejme/12132.
D. Wolfram, “The symbiotic relationship between information retrieval_ and informetrics,” Scientometrics, vol. 102, no. 3, pp. 2201–2214, Mar. 2015, doi: 10.1007/s11192-014-1479-0.
K. R. Devi, “THE ROLE OF MATHEMATICS IN COMPUTER SCIENCE COLLEGE EDUCATION,” 2019. [Online]. Available: www.ijcrcst.com
P. M. Farib, M. Ikhsan, and M. Subianto, “Proses berpikir kritis matematis siswa sekolah menengah pertama melalui discovery learning,” Jurnal Riset Pendidikan Matematika, vol. 6, no. 1, pp. 99–117, May 2019, doi: 10.21831/jrpm.v6i1.21396.
M. Zulyanty, I. Yuwono, D. M. Muksar, and U. N. Malang, “METAKOGNISI SISWA DENGAN GAYA BELAJAR INTROVERT DALAM MEMECAHKAN MASALAH MATEMATIKA,” 2017. [Online]. Available: http://journal2.um.ac.id/index._php/jkpm
D. Herawaty, “Model pembelajaran matematika realistik yang efektif untuk meningkatkan kemampuan matematika siswa SMP,” Jurnal Pendidikan Matematika Raflesia, vol. 3, no. 2, 2018, [Online]. Available: https://ejournal.unib.ac.id/index._php/jpmr
Wahyuddin, “Meningkatkan Hasil Belajar Matematika Melalui Pembelajaran Dengan Pemberian Tugas Terstruktur Disertai Umpan Balik,” Media Pendidikan Matematika, vol. 8, no. 2, p. `-14, Dec. 2020, [Online]. Available: http://ojs.ikipmataram.ac.id/index._php/jmpm
I. Firman Ashari, E. Dwi Nugroho, R. Baraku, I. N. Yanda, and R. Liwardana, “Analysis of Elbow, Silhouette, Davies-Bouldin, Calinski-Harabasz, and Rand-Index eval_uation on K-Means Algorithm for Classifying Flood-Affected Areas in Jakarta,” 2023. [Online]. Available: http://jurnal.polibatam.ac.id/index._php/JAIC
J. B. Chandra and D. Nasien, “Application Of Machine Learning K-Nearest Neighbour Algorithm To Predict Diabetes,” Pekanbaru, Indonesia, Jun. 2022. [Online]. Available: http://www.ijeepse.ejournal.unri.ac.id
A. Bode, Z. Y. Lamasigi, and I. C. R. Drajana, “The K-Nearest Neighbor Algorithm using Forward Selection and Backward Elimination in Predicting the Student’s Satisfaction Level of University Ichsan Gorontalo toward Online Lectures during the COVID-19 Pandemic,” ILKOM Jurnal Ilmiah, vol. 15, no. 1, pp. 118–123, Apr. 2023, doi: 10.33096/ilkom.v15i1.1381.118-123.
A. Naas, S. Na’iema, H. Mulyo, and A. Widiastuti, “Klasifikasi penerima bantuan program rehabilitasi rumah tidak layak huni menggunakan algoritme K-Nearest Neighbor,” Jurnal Teknologi dan Sistem Komputer, vol. 10, no. 1, pp. 32–37, 2022, doi: 10.14710/jtsiskom.2022.14110.
F. Ramadhani and O. Krianto Sulaiman, “Implementation of the K-Nearest Neighbor (KNN) Algorithm in Making a Web-Based Article Topic System,” International of Computer Science and Information Technology (AIoCSIT) Journal, vol. 3, no. 1, pp. 1–8, 2021.
J. Pecuchova and M. Drlik, “Identification of Students with Similar Behavioural Patterns Using Clustering Techniques,” in E-learning in the Transformation of Education in Digital Society, 2022, pp. 257–267. doi: 10.34916/el.2022.14.19.
F. E. Ozturk, N. Demirel, and M. Bilgisi, “Comparison of the Methods to Determine Optimal Number of Cluster,” 2023. [Online]. Available: www.dergipark.gov.tr/veri
S. Suraya, M. Sholeh, and U. Lestari, “eval_uation of Data Clustering Accuracy using K-Means Algorithm,” International Journal of Multidisciplinary Approach Research and Science, vol. 2, no. 01, pp. 385–396, Dec. 2023, doi: 10.59653/ijmars.v2i01.504.
Y. Hasan, “Machine Learning Pengenalan Herpetofauna Dilindungi Di Indonesia,” 2023. doi: 10.54367.
H. Sunandar, “Machine Learning Pengenalan Anura Berdasarkan Corak dan Warna,” 2023. doi: 10.54367.
S. Sanjaya, M. L. Pura, S. K. Gusti, F. Yanto, and F. Syafria, “K-Nearest Neighbor for Classification of Tomato Maturity Level Based on Hue, Saturation, and Value Colors,” Indonesian Journal of Artificial Intelligence and Data Mining, vol. 2, no. 2, p. 101, Nov. 2019, doi: 10.24014/ijaidm.v2i2.7975.
C. Yuan and H. Yang, “Research on K-Value Selection Method of K-Means Clustering Algorithm,” J (Basel), vol. 2, no. 2, pp. 226–235, Jun. 2019, doi: 10.3390/j2020016.
W. Utomo, “The comparison of k-means and k-medoids algorithms for Clustering the spread of the covid-19 outbreak in Indonesia,” ILKOM Jurnal Ilmiah, vol. 13, no. 1, pp. 31–35, Apr. 2021, doi: 10.33096/ilkom.v13i1.763.31-35.
H. Mayangsari, D. Kartika, D. Musu, and J. K. Sistem Informasi Universitas Dipa Makassar Jln Perintis Kemerdekaan, “Analisis Sistem Informasi Pendistribusian Tempat KKL Menggunakan Metode K-Nearst Neighbor,” 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 KAKIFIKOM (Kumpulan Artikel Karya Ilmiah Fakultas Ilmu Komputer)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.