Implementasi Speech Recognition Berbasis Android Dalam Optimalisasi Komunikasi Bagi Penyandang Tunarungu
DOI:
https://doi.org/10.54367/jtiust.v6i2.1508Abstract
This study aims to implement Android-based Speech Recognition or Speech to Text to make it easier to communicate with deaf people, so that everyone who wants to communicate does not need to understand certain sign languages when interacting with the deaf person. The research method in developing the system uses the SDLC (System Development Life Cycle) method or often referred to as the waterfall approach. The method used to identify voice using the Vector Quantization method, which is a method for conducting learning in a supervised competitive layer, with the Vector Quantization method it can be concluded that it has a better sound accuracy and clarity value with a performance result of 93%. from the results of a survey conducted from 45 people with hearing impairment, the application that was built played a very good role in terms of the continuity of the interaction process that was carried out very smoothly and easily understood by the deaf. Keywords— Speech recognition, Speech to Text, Vector QuantizationReferences
Dinata, C., Puspitaningrum, D., & Erna, E. Implementasi Teknik Dynamic Time Warping (Dtw) Pada Aplikasi Speech To Text. Jurnal Teknik Informatika, (2018). 10(1), 49–58.
Fariz, M., Afkar, T., Irawan, B., Nasution, S. M., Teknik, F., Telkom, U., Model, H. M., & Model, G. M. SPEECH TO TEXT MENGGUNAKAN METODE HIDDEN MARKOV MODEL, (2019). 6(2), 5801–5808.
Fikriyya, A., & Dirgahayu, R. T. Implementasi Prototyping dalam Perancangan Sistem Informasi Sekolah Desa Pendar Foundation Yogyakarta. (2020).
I Komang Setia Buana. Implementasi Aplikasi Speech to Text untuk Memudahkan Wartawan Mencatat Wawancara dengan Python. Jurnal Sistem Dan Informatika (JSI), (2020). 14(2), 135–142.
Inggi, R., Sugiantoro, B., & Prayudi, Y. Penerapan System Development Life Cycle ( Sdlc ) Dalam ( Sdlc ) Dalam Mengembangkan. SemanTIK, (2018). 4(2), 193–200.
Khairunizam, K., Danuri, D., & Jaroji, J. Aplikasi Pemutar Musik Menggunakan Speech Recognition. INOVTEK Polbeng - Seri Informatika, (2017). 2(2), 97.
M., Hidayat, S., & Amrullah, A. Z. Speech Recognition Untuk Aplikasi Kamus Bahasa Indonesia-Sumbawa Berbasis Android. Jurnal Bumigora Information Technology (BITe), (2019). 1(2), 126–137.
Marlina, M., Saputra, W., Mulyadi, B., Hayati, B., & Jaroji, J. Aplikasi sistem pakar diagnosis penyakit ispa berbasis speech recognition menggunakan metode naive bayes classifier. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, (2017). 8(1), 58–70.
Nugroho, K. Implementasi Sistem Speech To Text Berbasis Android Menggunakan APP Inventor Speech Recognizer. Infokam, (2019). 1, 38–43.
Setiawan, W. Perbandingan Metode Hidden Markov Model Dan Vector Quantization Untuk Aplikasi Identifikasi Suara. Jurnal Ilmiah Spektrum, (2016). 3(2), 107–112.
Susanti, M., Susilo, B., & Andreswari, D. Aplikasi Speech-To-Text Dengan Metode Mel Frequency Cepstral Coefficient ( Mfcc ) Dan Hidden Markov Model ( Hmm ) Dalam Pencarian Kode. Jurnal Rekursif, (2018). 6(1), 48–58.
Suendri. Implementasi Diagram UML (Unified Modelling Language) Pada Perancangan Sistem Informasi Remunerasi Dosen Dengan Database Oracle. Jurnal Ilmu Komputer dan Informatika, (2018). 1-9.
Sutanti, P. A. S., & Mastrika Giri, G. A. V. Low Filtering Method for Noise Reduction at Text to Speech Application. JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), (2020). 8(3), 339.
Yulianton, H., Studi, P., Informatika, T., Informasi, F. T., Stikubank, U., Bangun, R., Text, A., Speech, T., Pembelajaran, S., Inggris, B., & Tuna, U. Rancang Bangun Aplikasi Text To Speech Sebagai, (2017). 9(2), 56–62.