Visualisasi Data Opini Publik pada Media Sosial Twitter (Studi Kasus : Nusantara Sebagai IKN Indonesia)

Authors

  • Komang Dharmendra Institut Teknologi dan Bisnis STIKOM Bali
  • Ni Nym Utami Januhari ITB STIKOM Bali
  • Ricky Aurelius Nurtanto Diaz ITB STIKOM Bali
  • I Putu Ramayasa ITB STIKOM Bali
  • I Made Agus Wirahadi Putra ITB STIKOM Bali

Keywords:

Twitter, data visualization, nusantara

Abstract

 The capital city has an important role for various aspects of government, the capital city has a function as the center of political power and the economy of a country. In the process, sometimes the head of government of a country moves the capital of the country, either moving it to an existing city or building a new city that was built specifically to become the capital of the country. Like what Indonesia did, which planned to move the country's capital, which was previously in Jakarta, moved to East Kalimantan and built a new city to become the nation's capital with the name Nusantara. The relocation of the capital city was carried out to divide the economic center and the government center which were previously centered in Jakarta into an economic center in Jakarta and a government center in the archipelago. The announcement of the name of Indonesia's new capital city received reactions from the public, with various written opinions being shared through social media. One of the social media channels that is widely used is Twitter. With so many public responses through social media, a process is needed to find out how to respond and form of expression for the announcement of the name of the capital city of the archipelago. One of the processes that can be done is to visualize tweets containing the word "Nusantara" which collected 83604 tweets using data on the number of tweets, posting hours, hashtags that can find out how the public responds to the announcement of the state capital "Nusantara"..

References

U.-U. Kotanegara, ‘PRESIDEN REPUBLIK INDONESIA MEMUTUSI(AN’:, p. 54.

G. A. Buntoro, ‘Sentiments Analysis for Governor of East Java 2018 in Twitter’, SinkrOn, vol. 3, no. 2, p. 49, Dec. 2019, doi: 10.33395/sinkron.v3i2.10025.

I. K. Dharmendra, N. N. U. Januhari, I. P. Ramayasa, and I. M. A. W. Putra, ‘Uji Komparasi Sentiment Analysis Pada Opini Alumni Terhadap Perguruan Tinggi’, J. Tek. Inform. UNIKA St. Thomas, pp. 1–6, May 2022, doi: 10.54367/jtiust.v7i1.1748.

JustAnotherArchivist, ‘snscrape’. Aug. 27, 2022. Accessed: Aug. 28, 2022. [Online]. Available: https://github.com/JustAnotherArchivist/snscrape

komang dharmendra, K. O. Saputra, and I. N. Pramaita, ‘Analisa Sentiment Untuk Opini Alumni Perguruan Tinggi’, Maj. Ilm. Teknol. Elektro, vol. 18, no. 2, pp. xxxx–xxxx, Jul. 2019, doi: 10.24843/MITE.2019.V18I02.P11.

A. S. Neogi, K. A. Garg, R. K. Mishra, and Y. K. Dwivedi, ‘Sentiment analysis and classification of Indian farmers’ protest using twitter data’, Int. J. Inf. Manag. Data Insights, vol. 1, no. 2, p. 100019, Nov. 2021, doi: 10.1016/j.jjimei.2021.100019.

D. A. Kristiyanti, Normah, and A. H. Umam, ‘Prediction of Indonesia presidential election results for the 2019-2024 period using twitter sentiment analysis’, in Proceedings of 2019 5th International Conference on New Media Studies, CONMEDIA 2019, Oct. 2019, pp. 36–42. doi: 10.1109/CONMEDIA46929.2019.8981823.

A. D. Cintya and A. D. Cintya, ‘Klasifikasi dan Visualisasi Data Pada Pemilihan Gubernur DKI Jakarta 2017 Berdasarkan Data Twitter’, Universitas Gadjah Mada, 2017. Accessed: May 01, 2022. [Online]. Available: http://etd.repository.ugm.ac.id/penelitian/detail/111375

L. Shen et al., ‘Towards Natural Language Interfaces for Data Visualization: A Survey’, IEEE Trans. Vis. Comput. Graph., pp. 1–1, 2022, doi: 10.1109/TVCG.2022.3148007.

‘Sentimental Analysis of Twitter Comments on Covid-19 | IEEE Conference Publication | IEEE Xplore’. https://ieeexplore.ieee.org/abstract/document/9377048 (accessed Aug. 28, 2022).

M. G. Pradana, ‘PENGGUNAAN FITUR WORDCLOUD DAN DOCUMENT TERM MATRIX DALAM TEXT MINING’, J. Ilm. Inform., vol. 8, no. 01, Art. no. 01, Mar. 2020, doi: 10.33884/jif.v8i01.1838.

C. S. Ishikiriyama, D. Miro, and C. F. S. Gomes, ‘Text Mining Business Intelligence: A small sample of what words can say’, Procedia Comput. Sci., vol. 55, pp. 261–267, Jan. 2015, doi: 10.1016/j.procs.2015.07.044.

P. Waghmare, ‘Text Mining and Word Cloud Analysis of the Articles Published In Selected Library and Information Science Journals over the Past Decade’, Int. J. Inf. Dissem. Technol., vol. 11, no. 3, Art. no. 3, Nov. 2021, Accessed: Aug. 28, 2022. [Online]. Available: https://ijidt.com/index.php/ijidt/article/view/565

Downloads

Published

2022-12-21

Issue

Section

Artikel