Analisis Kualitas Sangraian Biji Kopi Berdasarkan Ekstraksi Fitur Bentuk dan GLCM
Keywords:
Analisis citra digital, sangraian biji kop, ekstraksi fitur bentuk, GLCM, Naïve BayesAbstract
This study aims to develop a digital image analysis system that can determine the quality and maturity level of roasted coffee beans, in terms of detecting roasted coffee beans that are suitable and unfit for consumption and sold as specialty coffee as contained in the standard coffee bean classification. provided by SNI No. 01-2907-1999. This study focuses on the physical changes of coffee beans after the roasting process, changes that affect in terms of quality, namely shape. Shape extraction uses Metric because the shape to be searched for is a circle shape, and texture extraction uses Gray Level Co-Occurrence Matric (GLCM). This research began by collecting data in the form of 2D digital images of roasted coffee beans. The system developed in this study consisted of two main stages, namely training and testing. The number of coffee bean image data used is 90 images. In analyzing the quality of coffee beans, the data used is an image of coffee beans which consists of two levels, that is good and bad beans. Classification using Naive Bayes algorithm. Based on the results of research on coffee bean quality analysis, the highest training accuracy was 88% and the highest test accuracy was 90%.References
Ardiansyah. (2015). Pengolahan Citra Penginderaan Jauh Menggunakan ENVI 5.1 dan ENVI LiDAR. Jakarta Selatan.
Asmara, R. A., & Heryanto, T. A. (2019). Klasifikasi Varietas Biji Kopi Arabika Menggunakan Ekstraksi Bentuk dan Tekstur. Seminar Informatika Aplikatif (SIAP), 316–322. Retrieved from http://jurnalti.polinema.ac.id/index.php/SIAP/article/view/581
Carmelita A, Hidekazu FUKAI. (2018). Classification of Coffee Bean Images Based on Defect Types using SVM. TAJST, 2018; 1: 181–187
Elex Media Komputindo. (2013). Komputer Wahana. Ragam Aplikasi Pengolahan Image dengan Matlab. Jakarta.
Faridah, Gea OF, Parikesit, Ferdiansjah. (2011). Coffee Bean Grade Determination Based on Image Parameter. TELKOMNIKA, 2011; 9(3): 547–554.
Food and Agriculture Organization of United Nation (FAO). (2013). http://faostat.fao.org.
Irianto, Suhendro. (2016). “Analisa Citra Digital Dan Content Based Image Retrieval"
James Hoffmann. (2018). The World Atlas of Coffee “From Beans to Brewing”- Coffees Explored, Explained and Enjoyed”. Inggris. Firefly Books. 2018. Hal: 256
Joko, N., Lumbanbatu, J., & Sri, R. (2009). Pengaruh Suhu dan Lama Penyangraian Terhadap Sifat Fisik-Mekanis Biji Kopi Robusta. Seminar Nasional Dan Gelar Teknologi PERTETA, 6(2006), 217–225.
Karami, Amin. (2011). Utilization and Comparison of Multi Attribute Decision Making Techniques to Rank Bayesian Network Options. Master Degree Project in Informatics One year Level ECTS 30 Spring Term Year 2011
Noor, S. C. (2011). Mengubah Citra Berwarna Menjadi Grayscale Dan Citra Biner. Jurnal Teknologi Informasi Dinamik. Vol.16 No.1.
Nurhayati, Iwan K, Hadihardaja, Indratmo Soekarno., & M. Cahyono. (2014). A Study of Hold-Out and K-Fold Cross Validation for Accuracy of Groundwater Modeling in Tidal Lowland Reclamation Using Extreme Learning Machine. 2nd International Conference on Technology, Informatics, Management, Engineering & Environment. pp: 228 – 233
Siqueira, F. R. d., Schwartz, W. R. & Pedrini, H., (2013). Multi-scale Gray Level Co- occurrence Matrices for Texture Description. Neurocomputing, Volume 120, pp. 336-345.
Thomas Edvan, B., Edison, R., Made Same, D., Jurusan Budidaya Tanaman Perkebunan dan, M., & Pengajar Jurusan Budidaya, S. (2016). Pengaruh Suhu dan Lama Penyangraian pada. Jurnal Agro Industri Perkebunan, 4(1), 31–40.
Yang, J & Miao, Z. (2016). On the Image Enhancement Histogram Processing. 2016 3rd International Conference on Informative and Cybernetics for Computational SocialSystems (ICCSS). School Electronics and Information Engineering. Liaoning University of Technology China.