Algoritma Naive Bayes untuk Prediksi Keberhasilan Mahasiswa pada Mata Kuliah Praktikum

Authors

  • Entin Sutinah Universitas Bina Sarana Informatika
  • Nani Agustina Universitas Bina Sarana Informatika
  • Martini Universitas Bina Sarana Informatika

Keywords:

Success, Student, Practical courses, Naive Bayes, Prediction

Abstract

The lecture system at BSI University has practicum courses, where the teaching and learning process is 20% theory and 80% practicum by learning software according to current technological developments. In the practicum-based teaching and learning process, there are several problems including understanding the content of the material delivered by the lecturer, communication between students in class and lecturers because there are many discussions, in practicum learning made in groups to make projects, this group cohesiveness is also an assessment in achieving predetermined targets, the learning atmosphere also supports the teaching and learning process, the process of lecturer assessment of students will be the final result of learning and teaching activities. In the practicum course, 4 credits are provided and this 4 credits time is still considered insufficient to complete quite a lot of material at each meeting, from these problems the author wants to know the prediction of student success rates in practicum course learning. This study uses the naive bayes method with a total sample of 130 samples from the results of a questionnaire distributed to students with 20 questions, so that this study results in that students feel successful in practicum course learning with an accuracy level of 100%, a precision level of 100%, and a recall level of 100% after being processed using rapidminer 5 software.

References

D. A. Saputra and A. Mustofa, “Penerapan Metode Naïve Bayes untuk Evaluasi dan Menentukan Dosen yang Maksimal,” Teknois J. Ilm. Teknol. Inf. dan Sains, vol. 12, no. 1, pp. 67–78, 2022, doi: 10.36350/jbs.v12i1.131.

I. Purnamasari and K. Afnisari, “Performansi Klasifikasi Dosen Berprestasi Menggunakan Metode Naive Bayes Classifier,” Paradigma, vol. XX, no. 2, pp. 45–50, 2018, doi: 10.31294/p.v20i2.3788.

D. R. Sari, D. Hartama, I. S. Damanik, and A. Wanto, “Penerapan Metode Naive Bayes dalam Memprediksi Kepuasan Mahasiswa Terhadap Cara Pengajaran Dosen,” Pros. Semin. Nas. Ris. Inf. Sci., pp. 287–297, 2019, doi: 10.30645/senaris.v1i0.34.

A. Triayudi and G. Soepriyono, “Penerapan Data Mining Untuk Mengukur Kepuasan Mahasiswa Terhadap Pembelajaran dengan Menggunakan Algoritma Naïve Bayes,” J. Comput. Syst. Informatics, vol. 4, no. 1, pp. 39–44, 2022, doi: 10.47065/josyc.v4i1.2524.

S. C. Bilqisth, K. Khoirudin, and A. N. Putri, “Mengukur Tingkat Kepuasan Mahasiswa Terhadap E-Learning Universitas Semarang Menggunakan Algoritma Naïve Bayes,” J. Tek. Elektro dan Inform., vol. 17, no. 2, pp. 1–7, 2022, doi: 10.30587/e-link.v17i2.4447.

T. V. Meiyanti, M. Hatta, and A. Sevtiana, “Analisis Sentimen Mahasiswa Dengan Dosen Menggunakan Metode Naïve Bayes Classifier Pada Kuesioner Dosen,” J. Manaj. Sist. Inf., vol. 1, no. 2, pp. 51–55, 2023, doi: 10.51920/jurminsi.v1i2.143.

G. Gustientiedina, M. Siddik, and Y. Deselinta, “Penerapan Naïve Bayes untuk Memprediksi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademis,” J. Infomedia, vol. 4, no. 2, pp. 89–93, 2019, doi: 10.30811/jim.v4i2.1892.

Y. Astuti, I. R. Wulandari, A. R. Putra, and N. Kharomadhona, “Naïve Bayes untuk Prediksi Tingkat Pemahaman Kuliah Online Terhadap Mata Kuliah Algoritma Struktur Data,” J. Edukasi dan Penelit. Inform., vol. 8, no. 1, pp. 28–32, 2022, [Online]. Available: https://www.researchgate.net/publication/361094718.

N. Ferdyansyah and A. Solichin, “Analisis Sentimen Terhadap Pembelajaran Dosen Berdasarkan Data Kritik Saran Mahasiswa Menggunakan Metode Naive Bayes,” Bit (Fakultas Teknol. Inf. Univ. Budi Luhur), vol. 19, no. 2, pp. 104–111, 2022.

F. Malja, D. Kurniadi, K. Budayawan, and R. Darni, “Klasifikasi Bidang Minat Mahasiswa Elektronika Dalam Menentukan Topik Tugas Akhir Menggunakan Algoritma Naïve Bayes Classifier (Studi Kasus: Prodi Pendidikan Teknik Informatika FT-UNP),” J. Pendidik. Tambusai, vol. 7, no. 2, pp. 4192–4202, 2023, [Online]. Available: https://www.jptam.org/index.php/jptam/article/view/6813%0Ahttps://www.jptam.org/index.php/jptam/article/download/6813/5671.

R. H. Tinambunan, J. Titaley, and C. E. Mongi, “Klasifikasi Naive Bayes Dalam Memprediksi Tingkat Program Studi Matematika Fmipa Universitas Sam Ratulangi Manado,” Pros. Semin. Nas. Sains Dan Terap., pp. 141–149, 2022.

R. Rachman and R. N. Handayani, “Klasifikasi Algoritma Naive Bayes Dalam Memprediksi Tingkat Kelancaran Pembayaran Sewa Teras UMKM,” J. Inform., vol. 8, no. 2, pp. 111–122, 2021, doi: 10.31294/ji.v8i2.10494.

B. Purba and R. Syahputra, “Implementasi Metode Naive Bayes Classifier pada Evaluasi Kepuasan Mahasiswa terhadap Pembelajaran Daring,” InfoTekJar J. Nas. Inform. …, vol. 6, no. 1, pp. 85–91, 2021, [Online]. Available: https://jurnal.uisu.ac.id/index.php/infotekjar/article/view/4352.

A. R. Damanik, S. Sumijan, and G. W. Nurcahyo, “Prediksi Tingkat Kepuasan dalam Pembelajaran Daring Menggunakan Algoritma Naïve Bayes,” J. Sistim Inf. dan Teknol., vol. 3, no. 3, pp. 88–94, 2021, doi: 10.37034/jsisfotek.v3i3.49.

D. Jollyta, W. Ramdhan, and M. Zarlis, Konsep Data Mining Dan Penerapan. Deepublish, 2020.

K. Aeni and M. F. Asy’ari, “Prediksi Kepuasan Layanan Akademik Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 3, pp. 601–609, 2020, doi: 10.35957/jatisi.v7i3.603.

R. F. Putra et al., Data Mining Algoritma dan Penerapannya. PT. Sonpedia Publishing Indonesia, 2023.

T. Sanubari, C. Prianto, and N. Riza, Odol (One Desa One Product Unggulan Online) Penerapan Metode Naïve Bayes Pada Pengembangan Aplikasi E-Commerce Menggunakan Code Igniter). Politeknik Pos Indonesia, 2020.

Yahya, Data Mining. CV.Jejak, 2022.

R. Swastika, S. Mukodimah, F. Susanto, M. Muslihudin, and S. Ipnuwati, Implementasi Data Mining (Clastering, Association, Prediction, Estimation, Classification). CV. Adani Abimata, 2023.

Downloads

Published

2023-12-16

Issue

Section

Artikel