Klusterisasi Data Review Pengguna Aplikasi Marketplace blibli.com dengan Algoritma K-Means dan K-Medoids
Keywords:
Review, K-Means, K-Medoids, BlibliAbstract
The marketplace serves as a platform for consumers to engage in online shopping. With the increasing use of marketplaces, the role of application reviews becomes increasingly crucial. Reviews provided by application users are a significant source of information for assessing customer satisfaction with the application. This research aims to categorize review data from the Blibli marketplace application using the K-Means Clustering and K-Medoids Clustering methods. The dataset used consists of customer reviews from the Blibli application spanning from 2022 to 2023, totaling 17,255 reviews. The research results indicate that both methods yield four optimal clusters in the review data. Frequently occurring words such as 'application,' 'goods,' and 'shopping' are visualized in a word cloud, and the clustering results are presented in a cluster plot. The obtained findings aim to enhance the service quality of the Blibli application.References
F. Dwi Handayani And I. Rosyida, “Clustering Review Pengguna Aplikasi Zenius Pada Layanan Google Play Store Menggunakan Metode Dbscan Dan Hdbscan,” Emerging Statistics And Data Science Journal, Vol. 1, No. 2, 2023.
M. Afdal, L. Rahma Elita, P. Studi Sistem Informasi, F. H. Sains Dan Teknologi Uin Suska Riau Jl Soebrantas Km, And P. Pekanbaru -Riau, “Penerapan Text Mining Pada Aplikasi Tokopedia Menggunakan Algoritma K-Nearest Neighbor,” Jurnal Ilmiah Rekayasa Dan Manajemen Sistem Informasi, Vol. 8, No. 1, 2022.
M. Nurjanah And T. Arifin, “Penerapan Algoritma K-Means Untuk Analisis Data Ulasan Di Situs Tripadvisor,” Jurnal Responsif, Vol. 3, No. 1, Pp. 75–82, 2021, [Online]. Available: Http://Ejurnal.Ars.Ac.Id/Index.Php/Jti
J. Mantik And N. Ayu Privandhani, “2022) 1542-1550 Accredited,” 2022.
A. Habib Husaini, R. Mayasari, And U. Singaperbangsa Karawang, “Pengelompokan Ulasan Aplikasi Pedulilindungi Dengan Algoritma K-Medoids Pedulilindungi Application Review Grouping With The K-Medoids Algorithm,” Journal Of Information Technology And Computer Science (Intecoms), Vol. 5, No. 2, 2022.
G. S. Sunarko, ) Wasino, And T. Sutrisno, “Jurnal Ilmu Komputer Dan Sistem Informasi Klasterisasi Sentimen Ulasan Pengguna Aplikasi Bca Mobile Pada Platform Google Play Store Dengan Algoritma K-Means Clustering.”
M. D. Pamungkas And H. Februariyanti, “Penerapan Algoritma K-Means Clustering Untuk Mengelompokan Data Review Barang Pada E-Commerce Lazada,” Semantik, Vol. 8, No. 2, P. 99, Dec. 2022, Doi: 10.55679/Semantik.V8i2.29058.
L. Petra Refialy, H. Maitimu, And M. Soyano Pesulima, “Perbaikan Kinerja Clustering K-Means Pada Data Ekonomi Nelayan Dengan Perhitungan Sum Of Square Error (Sse) Dan Optimasi Nilai K Cluster,” 2021.
H. Lailatul Ramadhania, L. Zakaria, And Dan Nusyirwan, “Aplikasi Metode Sillhouette Coefficient, Metode Elbow Dan Metode Gap Staticstic Dalam Menentukan K Optimal Pada Analisis K-Medoids,” 2023.
H. Dame Tampubolon, M. Safii, And D. Suhendro, “Penerapan Algoritma K-Means Dan K-Medoids Clustering Untuk Mengelompokkan Tindak Kriminalitas Berdasarkan Provinsi,” Vol. 2, No. 2, Pp. 6–12, 2021, [Online]. Available: Http://Creativecommons.Org/Licences/By/4.0/