Integrasi Artificial Intelligence Pada Aplikasi ERP: Systematic Literature Review

Authors

  • Teddy Siswanto Universitas Trisakti
  • Syandra Sari Universitas Trisakti
  • Hartini Universitas Trisakti
  • Shabrina Teruri Universitas Trisakti

Keywords:

Artificial Intelligence, Enterprise Resource Planning, Scopus, Integration, Systematic Literature Review

Abstract

Perkembangan aplikasi ERP mencerminkan upaya terus-menerus untuk mengintegrasikan dan menyederhanakan proses bisnis yang kompleks, dengan memanfaatkan teknologi terbaru untuk meningkatkan efisiensi dan efektivitas operasional perusahaan sesuai peningkatan kebutuhan sistem oleh para pengguna. Adanya peningkatan aplikasi ERP membuat membuat kebutuhan pengguna bertambah. Yang menjadi permasalahan kebutuhan pengguna saat ini tidak berhenti sampai disitu saja namun berkembang ingin dapat memprakiraan apa yang akan terjadi kemudian (predictive), lalu kejadian apa yang sering terjadi dan keputusan apa yang sebaiknya dapat diambil (prescriptive) serta proses keberlanjutan dari pengambilan keputusan dalam bisnisnya. Solusi yang dipilih adalah bagaimana ERP menjadi green software, dengan bantuan integrasi Artificial Intelligence (AI) yang memungkinkan sistem ERP untuk tidak hanya bekerja lebih efisien tetapi juga dengan lebih sedikit sumber daya energi, mengurangi emisi karbon, dan mendukung keberlanjutan lingkungan. Metodologi yang digunakan adalah Systematic Literature Review, melalui tahapan formulasi pertanyaan penelitian, strategi pencarian, ekstraksi data, pemetaan data dan analisis data. Adapun pencarian dilakukan melalui database Scopus pada periode Juli 2024. Dari hasil pencarian ditemukan sebanyak 576 paper dan kemudian setelah diseleksi hanya untuk terbitan 5 tahun terakhir dikarenakan perkembangan cepat untuk bidang teknologi informasi maka diperoleh sebanyak 336 paper. Setelah dilakukan pembatasan area berdasarkan subjek, keyword, tipe dokumen dan bahasa yang digunakan maka diperoleh 174 paper. Hasil penelitian menunjukkan penelitian integrasi Artificial Intelligence dalam Enterprise Resource Planning terbagi menjadi 2 (dua) cluster utama yaitu system-process dan application. Integrasi AI dengan ERP, secara signifikan meningkatkan efisiensi operasional dan produktivitas perusahaan dengan otomatisasi tugas-tugas rutin, analisis data yang lebih cerdas, dan pengambilan keputusan yang didukung data secara real-time. AI membantu dalam mengoptimalkan proses bisnis, seperti manajemen rantai pasokan, manajemen inventaris, dan prediksi permintaan dan pengambilan keputusan, yang berkontribusi pada penghematan biaya dan peningkatan kinerja. Dengan memanfaatkan machine learning dan analisis prediktif, AI memberikan wawasan yang lebih mendalam dan akurat dari data ERP, memungkinkan pengambilan keputusan yang lebih cepat dan berdasarkan informasi serta pengetahuan yang lebih baik.

References

. Solano, Maria C., and Juan C. Cruz. 2024. "Integrating Analytics in Enterprise Systems: A Systematic Literature Review of Impacts and Innovations" Administrative Sciences 14, no. 7: 138. https://doi.org/10.3390/admsci14070138

. Spanos, C., Gayialis, S. P., Kechagias, E. P., & Papadopoulos, G. A. (2022). An application of a decision support system enabled by a hybrid algorithmic framework for production scheduling in an SME manufacturer. Algorithms, 15(10). https://doi.org/10.3390/a15100372.

. Carbonneau, A., & Godin, F. (2023). Deep equal risk pricing of financial derivatives with non-translation invariant risk measures. Risks, 11(8). https://doi.org/10.3390/risks11080140.

. Moayedi, A., Abbaspour, R. A., & Chehreghan, A. (2019). An evaluation of the efficiency of similarity functions in density-based clustering of spatial trajectories. Annals of GIS, 25(4), 313–327. https://doi.org/10.1080/19475683.2019.1679254.

. Siddiqui, A., Zia, M. Y. I., & Otero, P. (2021). A universal machine-learning-based automated testing system for consumer electronic products. Electronics (Switzerland, 10(2), 1–26. https://doi.org/10.3390/electronics10020136.

. Maia, E., Wannous, S., Dias, T., Praça, I., & Faria, A. (2022). Holistic security and safety for factories of the future. Sensors, 22(24). https://doi.org/10.3390/s22249915.

. Wahedi, H. J., Heltoft, M., Christophersen, G. J., Severinsen, T., Saha, S., & Nielsen, I. E. (2023). Forecasting and inventory planning: An empirical investigation of classical and machine learning approaches for Svanehøj’s future software consolidation. Applied Sciences (Switzerland, 13(15). https://doi.org/10.3390/app13158581.

. Yap, H. Y., Choo, Y. H., Mohd Yusoh, Z. I., & Khoh, W. H. (2021). Person authentication based on eye-closed and visual stimulation using EEG signals. Brain Informatics, 8(1). https://doi.org/10.1186/s40708-021-00142-4

. Reis, J. (2023). Exploring applications and practical examples by streamlining material requirements planning (MRP) with Python. Logistics, 7(4). https://doi.org/10.3390/logistics7040091.

. Chen, Guijun & Zhang, Xueying & Zhang, Jing & Li, Fenglian & Duan, Shufei. (2022). A novel brain-computer interface based on audio-assisted visual evoked EEG and spatial-temporal attention CNN. Frontiers in Neurorobotics. 16. 995552. 10.3389/fnbot.2022.995552.

. Abdullah, M. (2021). The implication of machine learning for financial solvency prediction: An empirical analysis on public listed companies of Bangladesh. Journal of Asian Business and Economic Studies, 28(4), 303-320. https://doi.org/10.1108/JABES-11-2020-0128

. Ahsan Awais, M., Ward, T., Redmond, P., & Healy, G. (2024). From lab to life: Assessing the impact of real-world interactions on the operation of rapid serial visual presentation-based brain-computer interfaces. Journal of Neural Engineering, 21(4). https://doi.org/10.1088/1741-2552/ad5d17

. Alarefi, M. (2022). The effect of data characteristics and top management characteristics on decision-making capabilities: The role of AI and business analytical capability. WSEAS Transactions on Information Science and Applications, 19, 237-247. https://doi.org/10.37394/23209.2022.19.24.

. Gasco-Hernandez, M., Zheleva, M., Bogdanov, P., & Ramon Gil-Garcia, J. (2019). Towards a socio-technical framework for bridging the digital divide in rural emergency preparedness and response: Integrating user adoption, heterogeneous wide-area networks, and advanced data science. In ACM International Conference Proceeding Series (pp. 362-369). Association for Computing Machinery. https://doi.org/10.1145/3325112.3325217.

. Gond, M., Zerman, E., Knorr, S., & Sjöström, M. (2023). LFSphereNet: Real-time spherical light field reconstruction from a single omnidirectional image. In Proceedings - CVMP 2023: 20th ACM SIGGRAPH European Conference on Visual Media Production (pp. [page numbers]). Association for Computing Machinery. https://doi.org/10.1145/3626495.3626500.

. Gill, M. S., & Fay, A. (2024). Utilisation of semantic technologies for the realisation of data-driven process improvements in the maintenance, repair and overhaul of aircraft components. CEAS Aeronautical Journal, 15(2), 459–480. https://doi.org/10.1007/s13272-023-00696-5.

. Schreyer, M., Sattarov, T., & Borth, D. (2022). Federated and privacy-preserving learning of accounting data in financial statement audits. In Proceedings of the 3rd ACM International Conference on AI in Finance, ICAIF 2022 (pp. 105-113). Association for Computing Machinery. https://doi.org/10.1145/3533271.3561674.

. Akhter, R., Lawal, K., Rahman, M. T., & Mazumder, S. A. (2020). Classification of common and uncommon tones by P300 feature extraction and identification of accurate P300 wave by machine learning algorithms. International Journal of Advanced Computer Science and Applications. Retrieved from https://www.ijacsa.thesai.org

. Müller, R., Schreyer, M., Sattarov, T., & Borth, D. (2022). RESHAPE: Explaining accounting anomalies in financial statement audits by enhancing SHapley Additive exPlanations. In Proceedings of the 3rd ACM International Conference on AI in Finance, ICAIF 2022 (pp. 174-182). Association for Computing Machinery. https://doi.org/10.1145/3533271.3561667

. Srimaharaj, W., & Chaisricharoen, R. (2021). A novel processing model for P300 brainwaves detection. Journal of Web Engineering, 20(8), 2545-2570. https://doi.org/10.13052/jwe1540-9589.20815.

. Wen, Y. (2019). Research and implementation of intelligent ERP platform for SMEs based on cloud computing. In IOP Conference Series: Materials Science and Engineering (Vol. 646, No. 1, p. 012014). Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/646/1/012014.

Downloads

Published

2024-12-22

Issue

Section

Artikel