Pengembangan Kerangka Kerja Berbasis Artificial Neural Network untuk Identifikasi Risiko Proyek Teknologi Informasi
Keywords:
Framework, Algorithm, ANN, IT Project RiskAbstract
Information technology (IT) project risk management is a challenge that requires an effective analytical approach. This research develops an Artificial Neural Network (ANN)-based framework to identify and classify risks in IT projects. The research involves several stages, from collecting historical project data, pre-processing the data, training the ANN model, to interpreting the risk prediction results. The ANN model is designed to handle static project features such as team size, budget, duration, and generate risk classifications based on patterns recognized in the data. eval_uation of the model showed adequate results with 66% accuracy, 48% precision, 51% recall, and 50% F1-score. Further analysis is needed to address class imbalance and optimize model hyperparameters to improve prediction performance. This research contributes to the application of ANN in IT project risk management, with the potential to be implemented in organizations facing similar challengesReferences
Alatawi, M. N., Alyahyan, S., Hussain, S., Alshammari, A., Aldaeej, A. A., Alali, I. K., & Alwageed, H. (2023). A Data-Driven Artificial Neural Network Approach to Software Project Risk Assessment. IET Software. https://doi.org/10.1049/2023/4324783
Riaz, M. T., Jahan, M. S., Arif, K. S., & Butt, W. H. (2019). Risk Assessment on Software Development using Fishbone Analysis. International Conference on Data and Software Engineering. https://doi.org/10.1109/ICODSE48700.2019.9092727
Cucus, A., Sari, W. P., Aminuddin, A., Saputra, D. I. S., Hammood, W. A., & Aziza, R. F. A. (2023). Systematic Review of IT Risk Management Using a Scientometric Approach. 126-131. https://doi.org/10.1109/icoiact59844.2023.10455938
Menezes, J., Gusmão, C., & Perrelli de Moura, H. (2019). Risk factors in software development projects: a systematic literature review. Software Quality Journal, 27(3), 1149-1174. https://doi.org/10.1007/S11219-018-9427-5
Nabeel, M. Z. (2024). AI-Enhanced Project Management Systems for Optimizing Resource Allocation and Risk Mitigation. Asian Journal of Multidisciplinary Research & Review, 5(5), 53-91. https://doi.org/10.55662/ajmrr.2024.5502
Masso, J., Masso, J., Pino, F. J., Pardo, C., García, F., & Piattini, M. (2020). Risk management in the software life cycle: A systematic literature review. Computer Standards & Interfaces, 71, 103431. https://doi.org/10.1016/J.CSI.2020.103431
Buganova, K., & Šimickova, J. (2019). Risk management in traditional and agile project management. Transportation Research Procedia, 40, 986-993. https://doi.org/10.1016/J.TRPRO.2019.07.138
Bhattacharya, N., & Kumar, P. (2025). A Comparative Analysis of Artificial Neural Network and Convolutional Neural Network Models. Advances in Psychology, Mental Health, and Behavioral Studies (APMHBS) Book Series, 163-188. https://doi.org/10.4018/979-8-3693-7545-7.ch007
Salin, H., & Lundgren, M. (2022). Towards Agile Cybersecurity Risk Management for Autonomous Software Engineering Teams. Journal of Cybersecurity and Privacy, 2(2), 276–291. https://doi.org/10.3390/jcp2020015
Trzeciak, M. (2021). Sustainable Risk Management in IT Enterprises. 9(7), 135. https://doi.org/10.3390/RISKS9070135
Shi, X., Zhang, Y., Yu, M., & Zhang, L. (2025). Deep learning for enhanced risk management: a novel approach to analyzing financial reports. PeerJ, 11, e2661. https://doi.org/10.7717/peerj-cs.2661
Huang, X. (2024). Research on Financial Time Series Risk Assessment Model Based on Computer Deep Learning. 450-453. https://doi.org/10.1109/icmiii62623.2024.00088
Bauskar, S. R., Madhavaram, C. R., Galla, E. P., Sunkara, J. R., Gollangi, H. K. and Rajaram, S. K. (2024) Predictive Analytics for Project Risk Management Using Machine Learning. Journal of Data Analysis and Information Processing, 12, 566-580. https://doi.org/10.4236/jdaip.2024.124030
Li, H., Yazdi, M., Nedjati, A., Moradi, R., Adumene, S., Dao, U., Moradi, A., Haghighi, A., Obeng, F., Huang, C., Kang, H.-S., Pirbalouti, R. G., Zarei, E., Dehghan, M., Darvishmotevali, M., Ghasemi, P., Fard, P. S., & Garg, H. (2024). Harnessing AI for Project Risk Management: A Paradigm Shift (pp. 253-272). Springer International Publishing. https://doi.org/10.1007/978-3-031-51719-8_16