The Role of Fugaku Supercomputer in Advancing High-Performance Computing for COVID-19 Scientific Research

Authors

  • Lawrence Adi Supriyono Universitas Jakarta Internasional
  • Amalia Shifa Aldila University of Jakarta International
  • Afika Hikayatur Rohmah University of Jakarta International
  • Aurelio Nicholas Foni University of Jakarta International
  • George Steve University of Jakarta International

Keywords:

Fugaku, High-Performance Computing, COVID-19, simulasi komputasional, Computational Fluid Dynamics

Abstract

Pandemi COVID-19 menuntut pendekatan komputasi berskala besar untuk mempercepat penelitian, analisis, dan pengambilan keputusan berbasis data. Fugaku, salah satu superkomputer berperforma tertinggi di dunia, memainkan peran penting dalam mendukung riset terkait COVID-19 melalui kemampuan komputasi berkecepatan tinggi. Penelitian ini bertujuan untuk mengkaji peran Fugaku dalam pemodelan komputasional COVID-19, khususnya pada simulasi transmisi aerosol dan penemuan kandidat obat. Metode penelitian yang digunakan adalah studi kualitatif melalui tinjauan sistematis terhadap literatur ilmiah, laporan teknis, dan publikasi resmi terkait pemanfaatan Fugaku dalam konteks pandemi. Hasil kajian menunjukkan bahwa Fugaku mampu mempercepat simulasi dinamika aerosol menggunakan Computational Fluid Dynamics (CFD) serta analisis interaksi protein-obat melalui simulasi molekuler, sehingga memberikan pemahaman yang lebih akurat mengenai pola penyebaran virus dan potensi terapi. Temuan ini menegaskan bahwa superkomputer Fugaku berperan signifikan dalam menjembatani high-performance computing dengan aplikasi kesehatan nyata, serta menjadi model penting bagi pengembangan riset komputasi di masa depan.

References

K. Ando, R. Bale, C. G. Li, S. Matsuoka, K. Onishi, and M. Tsubokura, “Digital transformation of droplet/aerosol infection risk assessment realized on Fugaku for the fight against COVID-19,” Int. J. High Perform. Comput. Appl., vol. 36, no. 5–6, pp. 568–586, 2022.

R. Bale and M. Tsubokura, “Leveraging the supercomputer Fugaku for the assessment of droplet/aerosol transmission risks in COVID-19 mitigation efforts,” IEEJ Trans. Electr. Electron. Eng., vol. 19, no. 2, pp. 243–251, 2024.

R. Bale, K. Ando, C. G. Li, and M. Tsubokura, “Impact of airflow rate and supply–exhaust configuration on airborne particle transport,” Sustainability, vol. 17, no. 3, Art. no. 1124, 2025.

T. Nishihara et al., “Seamless numerical analysis of transient infectious droplet dispersion in indoor environments,” J. Aerosol Sci., vol. 175, Art. no. 106090, 2023.

Fujitsu Ltd., “Supercomputer Fugaku retains first place worldwide in HPCG and Graph500 rankings,” May 13, 2024. [Online]. Available: Fujitsu Press Release. Accessed: Des. 2025.

Fujitsu Ltd., “Supercomputer Fugaku retains first place worldwide in HPCG and Graph500 rankings,” Nov. 19, 2024. [Online]. Available: Fujitsu Press Release. Accessed: Des. 2025.

Fujitsu Ltd., “Supercomputer Fugaku retains first place worldwide in HPCG and Graph500 rankings,” Nov. 14, 2023. [Online]. Available: Fujitsu Press Release. Accessed: Des. 2025.

Fujitsu Ltd., “Supercomputer Fugaku retains first place worldwide in HPCG and Graph500 rankings,” May 22, 2023. [Online]. Available: Fujitsu Press Release. Accessed: Des. 2025.

S. Matsuoka, “Fugaku architecture and applications,” HPC School Keynote Lecture Notes, RIKEN, Tokyo, Japan, 2023.

RIKEN Center for Computational Science, Program for Promoting Research on the Supercomputer Fugaku, Kobe, Japan, 2024.

M. Li et al., “Scaling molecular dynamics with ab initio accuracy to 149 nanoseconds per day,” arXiv preprint arXiv:2410, Oct. 2024.

J. Li et al., “Scaling neural-network-based molecular dynamics with long-range electrostatic interactions to 51 nanoseconds per day,” arXiv preprint arXiv:2504, Apr. 2025.

Fujitsu and RIKEN, “Joint research on next-generation IT drug discovery technology using Fugaku and simulation-integrated AI,” May 17, 2022.

P. Diehl et al., “Simulating stellar merger using HPX/Kokkos on A64FX on supercomputer Fugaku,” arXiv preprint arXiv:2304, Apr. 2023.

L. Broers, R.-Y. Sun, and S. Yunoki, “Scalable simulation of quantum many-body dynamics with OR-represented quantum algebra,” arXiv preprint arXiv:2506, Jun. 2025.

“Achievements in atmospheric sciences by large-ensemble and high-resolution forecasting using supercomputer Fugaku,” Prog. Earth Planet. Sci., vol. 12, Art. no. 64, 2025.

Fujitsu Ltd. and Yokohama National University, “Real-time typhoon-associated tornado prediction using supercomputer Fugaku,” Feb. 12, 2025.

F-DATA: A Fugaku workload dataset for job-centric predictive modelling in HPC systems,” Sci. Data, vol. 12, Art. no. 311, 2025.

HPC Infrastructure (HPCI) Office Japan, Supercomputer Fugaku – Trial Access Projects Report, Tokyo, Japan, 2024.

N. L. Okafor, S. P. Gunawan, R. Zhafirah, D. W. Sujatmiko, A. S. Aldila, M. A. Scantya, L. A. Supriyono, and K. E. Putranto, “The impact of Aurora supercomputer in scientific area and the development analysis,” Media Informasi Analisa dan Sistem (MEANS), vol. 10, no. 2, pp. 120–129, 2025.

J. W. Creswell and J. D. Creswell, Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 5th ed. Thousand Oaks, CA, USA: SAGE Publications, 2018.

B. Kitchenham and S. Charters, Guidelines for Performing Systematic Literature Reviews in Software Engineering, EBSE Tech. Rep. EBSE-2007-01, Keele University, Keele, U.K., 2007.

IEEE Computer Society, “IEEE Xplore Digital Library,” IEEE. [Online]. Available: https://ieeexplore.ieee.org. Accessed: Jan. 2026.

RIKEN Center for Computational Science, Supercomputer Fugaku Technical Documentation. Kobe, Japan, 2024.

K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic mapping studies in software engineering,” in Proc. Int. Conf. Evaluation and Assessment in Software Engineering (EASE), Bari, Italy, 2008, pp. 68–77.

V. Braun and V. Clarke, “Using thematic analysis in psychology,” Qualitative Research in Psychology, vol. 3, no. 2, pp. 77–101, 2006.

T. Hoefler, W. Gropp, W. Kramer, and M. Snir, “Performance modeling for HPC applications,” Communications of the ACM, vol. 62, no. 7, pp. 54–63, 2019.

M. D. Hill and N. P. Jouppi, “Computer architecture: A quantitative approach,” IEEE Computer, vol. 51, no. 8, pp. 9–14, 2018.

J. Dongarra et al., “The LINPACK benchmark: Past, present, and future,” Concurrency and Computation: Practice and Experience, vol. 15, no. 9, pp. 803–820, 2003.

J. Dongarra et al., “HPCG benchmark: A new metric for ranking high performance computing systems,” International Journal of High Performance Computing Applications, vol. 30, no. 1, pp. 3–10, 2016.

P. Sagaut, Large Eddy Simulation for Incompressible Flows, 3rd ed. Berlin, Germany: Springer, 2006.

D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed. San Diego, CA, USA: Academic Press, 2002.

K. Ando, R. Bale, C. G. Li, S. Matsuoka, K. Onishi, and M. Tsubokura, “Digital transformation of droplet/aerosol infection risk assessment realized on Fugaku for the fight against COVID-19,” International Journal of High Performance Computing Applications, vol. 36, no. 5–6, pp. 568–586, 2022.

R. Bale and M. Tsubokura, “Leveraging the supercomputer Fugaku for the assessment of droplet/aerosol transmission risks in COVID-19 mitigation efforts,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 19, no. 2, pp. 243–251, 2024.

Downloads

Published

2025-12-31

Issue

Section

Artikel