Klasifikasi Gangguan Autisme Berdasarkan Dataset Perilaku Anak Menggunakan Metode K-Nearest Neighbor (KNN)

Authors

  • Muhamad Ihsan Ashari Universitas Pamulang Tangerang
  • Riky Susanto Universitas Pamulang Tangerang

Keywords:

Gangguan Spektrum Autisme, klasifikasi perilaku, deteksi dini, K-Nearest Neighbor, machine learning

Abstract

Deteksi dini Gangguan Spektrum Autisme (Autism Spectrum Disorder/ASD) sangat penting untuk mendukung intervensi perkembangan pada anak; namun, proses identifikasi awal masih menghadapi berbagai tantangan karena bergantung pada observasi manual yang memerlukan tenaga ahli terlatih dan dapat menyebabkan keterlambatan dalam diagnosis. Penelitian ini bertujuan untuk mengembangkan model klasifikasi berbasis data perilaku anak yang mampu memprediksi kemungkinan ASD secara objektif sebagai dukungan untuk skrining dini. Metode yang digunakan adalah pendekatan machine learning dengan algoritma K-Nearest Neighbor (KNN). Data penelitian diperoleh dari Toddler Autism Dataset Juli 2018 yang berisi 1.054 sampel dengan 19 variabel. Tahapan penelitian meliputi identifikasi variabel, prapemrosesan data, konversi variabel kategorikal ke bentuk numerik, normalisasi fitur, pembagian data menjadi 80% data latih dan 20% data uji, pelatihan model dengan nilai k = 5, serta evaluasi menggunakan akurasi dan confusion matrix. Hasil penelitian menunjukkan bahwa model KNN mencapai akurasi sebesar 97,16%, dengan nilai presisi dan recall yang tinggi pada kedua kelas, sehingga mampu membedakan secara efektif antara anak yang memiliki dan tidak memiliki indikasi ASD. Berdasarkan kinerja tersebut, dapat disimpulkan bahwa algoritma KNN memiliki potensi yang kuat sebagai pendekatan komputasi yang tepat untuk mendukung skrining dini ASD berbasis data perilaku, khususnya dalam lingkungan pendidikan atau klinis yang memerlukan dukungan identifikasi yang cepat, terukur, dan terstandar.

References

R. Agrawal and R. Agrawal, “Explainable AI in early autism detection: a literature review of interpretable machine learning approaches,” Discov. Ment. Heal., vol. 5, no. 1, 2025.

N. Haque, T. Islam, and M. Erfan, “An exploration of machine learning approaches for early Autism Spectrum Disorder detection,” Healthc. Anal., vol. 7, no. December 2023, 2025.

D. M. Setu, T. Islam, M. M. Rahman, S. K. Dey, and T. Rahman, “Evaluating the efficacy and site-specific performance of machine learning approaches: A comprehensive review of autism detection models,” Franklin Open, vol. 11, no. May, 2025.

S. B. Siagian, S. Samsudin, and M. D. Irawan, “Implementation of Gain Ratio on KNN Method in Predicting Sales of Electronic Sparepart at Panasonic Service Center Lhokseumawe,” J. Tek. Inform. C.I.T Medicom, vol. 14, no. 1, pp. 36–47, 2022.

S. Cheekaty and G. Muneeswari, “Early detection of autism spectrum disorder in children: A review,” AIP Conf. Proc., vol. 3044, no. 1, 2024.

Q. Y. Shambour, N. Qandeel, Y. Alraba’nah, A. Abumariam, and M. K. Shambour, “Artificial Intelligence Techniques for Early Autism Detection in Toddlers: A Comparative Analysis,” J. Appl. Data Sci., vol. 5, no. 4, pp. 1754–1764, 2024.

K. H. Abdulkareem, Z. H. Arif, and M. A. Mohammed, “Explainable Machine Learning Approach enables Computer-Aided Identification System for Children Autism Spectrum Disorder (C-ASD),” Iraqi J. Comput. Sci. Math., vol. 5, no. 4, 2024.

M. Ahmed et al., “Summarizing Recent Developments on Autism Spectrum Disorder Detection and Classification Through Machine Learning and Deep Learning Techniques,” Appl. Sci., vol. 15, no. 14, pp. 1–40, 2025.

N. Alam et al., “A Machine Learning Framework for Early Detection of Autism Spectrum Disorder in Adults Using Feature Scaling and Classification Techniques,” 2024 27th Int. Conf. Comput. Inf. Technol. ICCIT 2024 - Proc., no. December, pp. 3248–3253, 2024.

H. A. Hatim, Z. A. A. Alyasseri, and N. Jamil, “A recent advances on autism spectrum disorders in diagnosing based on machine learning and deep learning,” Artif. Intell. Rev., vol. 58, no. 10, 2025.

D. D. Khudhur and S. D. Khudhur, “The classification of autism spectrum disorder by machine learning methods on multiple datasets for four age groups,” Meas. Sensors, vol. 27, no. March, 2023.

M. Kumar, J. Aggarwal, A. Rani, T. Stephan, A. Shankar, and S. Mirjalili, “Secure video communication using firefly optimization and visual cryptography,” Artif. Intell. Rev., vol. 55, no. 4, pp. 2997–3017, 2022.

N. Mumenin, M. M. Rahman, M. A. Yousuf, F. M. Noori, and M. Z. Uddin, “Early diagnosis of autism across developmental stages through scalable and interpretable ensemble model,” Front. Artif. Intell., vol. 8, 2025.

P. Praveen, M. Nagendra, M. A. Rahul, Sahithya, S. Sai, and Shoaib, “Identification of Autism Spectrum Disorder (ASD) using Feature-based Machine Learning Classification Model,” 2nd Int. Conf. Sustain. Comput. Smart Syst. ICSCSS 2024 - Proc., vol. 17, no. 3, pp. 1378–1384, 2024.

M. D. Ganggayah et al., “Accelerating autism spectrum disorder care: A rapid review of data science applications in diagnosis and intervention,” Asian J. Psychiatr., vol. 108, no. April, 2025.

H. H. Hasan, “Artificial Intelligence in Early Detection of Autism Spectrum Disorder for Preschool ages: A Systematic Literature Review,” medRxiv, no. December 2024, p. 2025.09.10.25335333, 2025.

U. J. Ganai, A. Ratne, B. Bhushan, and K. S. Venkatesh, “Early detection of autism spectrum disorder: gait deviations and machine learning,” Sci. Rep., vol. 15, no. 1, pp. 1–19, 2025.

S. N. Safitri, H. Setiadi, and E. Suryani, “Educational Data Mining Using Cluster Analysis Methods and Decision Trees based on Log Mining,” J. RESTI, vol. 6, no. 3, pp. 448–456, 2022.

R. Simeoli, A. Rega, M. Cerasuolo, R. Nappo, and D. Marocco, “Using Machine Learning for Motion Analysis to Early Detect Autism Spectrum Disorder: A Systematic Review,” Rev. J. Autism Dev. Disord., no. 0123456789, 2024.

E. S. Atlam, K. O. Aljuhani, I. Gad, E. M. Abdelrahim, A. E. M. Atwa, and A. Ahmed, “Automated identification of autism spectrum disorder from facial images using explainable deep learning models,” Sci. Rep., vol. 15, no. 1, p. 41598, 2025.

G. A. Pradipta and Putu Desiana Wulaning Ayu, “Performansi Seleksi Fitur pada Metode Multi Klasifikasi untuk Deteksi Dini Autisme Berbasis Citra Wajah Anak,” J. Sist. dan Inform., vol. 18, no. 2, pp. 167–176, 2024.

L. Hakim, A. Sobri, L. Sunardi, and D. Nurdiansyah, “Prediksi penyakit jantung berbasis mesin learning dengan menggunakan metode k-nn,” J. Digit. Teknol. Inf., vol. 7, no. 2, p. 14, 2025.

R. Ayub, S. Immamul Ansarullah, F. Samdani, A. Akhtar, M. Afzal, and S. Moinuddin Ahmed, “Enhancing early detection of autistic spectrum disorder in children using machine learning approaches,” J. King Saud Univ. - Sci., vol. 36, no. 10, 2024.

I. Jeon et al., “Reliable Autism Spectrum Disorder Diagnosis for Pediatrics Using Machine Learning and Explainable AI,” Diagnostics, vol. 14, no. 22, 2024.

P. Bawa, V. Kadyan, A. Mantri, and H. Vardhan, “Investigating multiclass autism spectrum disorder classification using machine learning techniques,” e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 8, no. May, p. 100602, 2024.

Downloads

Published

2025-12-31

Issue

Section

Artikel