Karakteristik Struktural Bioplastik dari Tepung Porang dan Campuran Tepung Porang–Tepung Biji Durian
Keywords:
Bioplastik, Bioplastik komposit, campuran tepung porang-tepung biji durian, Karakteristik struktural, Tepung porangAbstract
-References
Baskaran, P. G., Kathiresan, M., Senthamaraikannan, P., & Saravanakumar, S. S. (2018). Characterization of new natural cellulosic fiber from the bark of Dichrostachys cinerea. Journal of Natural Fibers, 15, 62–68. https://doi.org/10.1080/15440478.2017.1304314
Dias, A. B., Müller, C. M. O., Larotonda, F. D. S., & Laurindo, J. B. (2010). Biodegradable films based on rice starch and rice flour. Journal of Cereal Science, 51(2), 213–219. https://doi.org/10.1016/j.jcs.2009.11.014
Díaz-Montes, E. (2022). Polysaccharides: sources, characteristics, properties, and their application in biodegradable films. Polysaccharides, 3, 480–501. https://doi.org/10.3390/polysaccharides3030029
Du, Y., Sun, J., Wang, L., Wu, C., Gong, J., Lin, L., Mu, R., & Pang, J. (2019). Development of antimicrobial packaging materials by incorporation of gallic acid into Ca2+ crosslinking konjac glucomannan/gellan gum films. International Journal of Biological Macromolecules, 137, 1076–1085. https://doi.org/10.1016/j.ijbiomac.2019.06.079
Fahrullah, F., & Ervandi, M. (2022). Karakterisasi mikrostruktur film whey dengan penambahan konjac glucomannan. Agrointek : Jurnal Teknologi Industri Pertanian, 16(3), 403–411. https://doi.org/10.21107/agrointek.v16i3.12303
Fahrullah, F., Radiati, L. E., Purwadi, & Rosyidi, D. (2020). The physical characteristics of whey based edible film added with konjac. Current Research in Nutrition and Food Science, 8(1), 333–339. https://doi.org/10.12944/CRNFSJ.8.1.31
Faridah, A. (2016). Comperation of porang flour (Amorphophallus muelleri) purification method: conventional maceration (gradient ethanol leaching) and ultrasonic maceration method using response surface methodology. International Journal on Advanced Science, Engineering and Information Technology, 6(2), 265–272. https://doi.org/10.18517/ijaseit.6.2.769
Fitriyana, F., Qhomaruddin, Q., & Nadir, M. (2022). Aplikasi bioplastik dari tepung porang sebagai kemasan makanan. Jurnal Teknik Kimia Vokasional (JIMSI), 2(2), 50–58.
Hadi, A., Nawab, A., Alam, F., & Zehra, K. (2022). Alginate/aloe vera films reinforced with tragacanth gum. Food Chemistry: Molecular Sciences, 4, 100105. https://doi.org/10.1016/j.fochms.2022.100105
Hermanto, M. B., Widjanarko, S. B., Suprapto, W., & Suryanto, A. (2019). The design and performance of continuous porang (Amorphophallus muelleri Blume) flour mills. International Journal on Advanced Science Engineering Information Technology, 9(6), 2021–2027.
Jin, Y., & Lu, Z. (2024). Preparation of carrageenan/konjac glucomannan/graphene oxide nanocomposite films with high mechanical and antistatic properties for food packaging. Polymer Bulletin, 81(2), 1373–1388. https://doi.org/10.1007/s00289-023-04784-8
Khodaei, D., Oltrogge, K., & Hamidi-Esfahani, Z. (2020). Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, Persian gum. LWT - Food Science and Technology, 117, 108617. https://doi.org/10.1016/j.lwt.2019.108617
Kurt, A. (2019a). Development of a water-resistant salep glucomannan film via chemical modification. Carbohydrate Polymers, 213, 286–295. https://doi.org/10.1016/j.carbpol.2019.03.013
Kurt, A. (2019b). Rheology of film-forming solutions and physical properties of differently deacetylated salep glucomannan film. Food and Health, 5(3), 175–184. https://doi.org/10.3153/fh19019
Kurt, A., & Kahyaoglu, T. (2014). Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydrate Polymers, 104, 50–58. https://doi.org/10.1016/j.carbpol.2014.01.003
Lei, Y., Wu, H., Jiao, C., Jiang, Y., Liu, R., Xiao, D., Lu, J., Zhang, Z., Shen, G., & Li, S. (2019). Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol. Food Hydrocolloids, 94, 128–135. https://doi.org/10.1016/j.foodhyd.2019.03.011
Liu, Z., Lin, D., Lopez-Sanchez, P., & Yang, X. (2020). Characterizations of bacterial cellulose nanofibers reinforced edible films based on konjac glucomannan. International Journal of Biological Macromolecules, 145, 634–645. https://doi.org/10.1016/j.ijbiomac.2019.12.109
Nair, S. B., & Jyothi, A. N. (2013). Cassava starch-konjac glucomannan biodegradable blend films: In vitro study as a matrix for controlled drug delivery. Starch/Staerke, 65, 273–284. https://doi.org/10.1002/star.201200070
Navasingh, R. J. H., Gurunathan, M. K., Nikolova, M. P., & Królczyk, J. B. (2023). Sustainable Bioplastics for Food Packaging Produced from Renewable Natural Sources. Polymers, 15, 3760. https://doi.org/10.3390/polym15183760
Nurlatifah, I., & Amyranti, M. (2023). the utilization from glucomannan of porang flour (Amorphophallus muelleri Blume) as a raw material for making an edible film. Berkala Sainstek, 11(3), 138–144.
Nurlela, N., Ariesta, N., Santosa, E., & Muhandri, T. (2022). Physicochemical properties of glucomannan isolated from fresh tubers of Amorphophallus muelleri Blume by a multilevel extraction method. Food Research, 6(4), 345–353.
Nurliasari, D., Dewantoro, A. I., Adly, M., Lubis, R., & Kastaman, R. (2024). An evaluation on physical characteristics of konjac polysaccharides-based film coating and its application for strawberries preservation. Journal of Renewable and Sustainable Energy, November. https://doi.org/10.32604/jrm.2024.056475
Permatasari, N. D., Witoyo, J. E., Masruri, M., Yuwono, S. S., & Widjanarko, S. B. (2022a). Application of a two-level full factorial design for the synthesis of composite bioplastics from durian seed flour and yellow konjac flour incorporating ethanolic extract of Syzygium myrtifolium leaves and its characterization. Nature Environment and Pollution Technology, 21(4), 1893–1901. https://doi.org/10.46488/NEPT.2022.v21i04.044
Permatasari, N. D., Witoyo, J. E., Masruri, M., Yuwono, S. S., & Widjanarko, S. B. (2022b). Nutritional and structural properties of durian seed (Durio zibenthinus Murr.) flour originated from West Kalimantan, Indonesia. IOP Conference Series: Earth and Environmental Science, 1012, 012038. https://doi.org/10.1088/1755-1315/1012/1/012038
Permatasari, N. D., Witoyo, J. E., Ni’maturohmah, E., Masruri, M., Yuwono, S. S., & Widjanarko, S. B. (2021). Potential of durian seed (Durio zibenthinus Murr.) flour as the source of eco-friendly plastics materials : a mini-review. International Conference on Agriculture and Applied Sciences (ICoAAS) 2021, 55–62. https://doi.org/10.25181/icoaas.v2i2.2483
Retnowati, D. S., Ratnawati, R., & Purbasari, A. (2015). A biodegradable film from jackfruit (Artocarpus heterophyllus) and durian (Durio zibethinus) seed flours. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 16(4), 395–404.
Saberi, B., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2017). Physical, barrier, and antioxidant properties of pea starch-guar gum biocomposite edible films by incorporation of natural plant extracts. Food and Bioprocess Technology, 10, 2240–2250. https://doi.org/10.1007/s11947-017-1995-z
Selvamurugan, M., & Sivakumar, P. (2019). Bioplastics – an eco-friendly alternative to petrochemical plastics. Current World Environment, 14(1), 49–59. https://doi.org/10.12944/cwe.14.1.07
Shafqat, A., Tahir, A., Mahmood, A., Tabinda, A. B., Yasar, A., & Pugazhendhi, A. (2020). A review on environmental significance carbon foot prints of starch based bio-plastic: A substitute of conventional plastics. Biocatalysis and Agricultural Biotechnology, 27, 101540. https://doi.org/10.1016/j.bcab.2020.101540
Shamsuddin, I. M., Jafar, J. A., Shawai, A. S. A., Yusuf, S., Lateefah, M., & Aminu, I. (2017). Bioplastics as better alternative to petroplastics and their role in national sustainability: a review. Advances in Bioscience and Bioengineering, 5(4), 63–70. https://doi.org/10.11648/j.abb.20170504.13
Strnad, S., Oberhollenzer, Z., Sauperl, O., Kreze, T., & Zemljic, L. F. (2019). Modifying properties of feather keratin bioplastic films using konjac glucomannan. Cellulose Chemistry and Technology, 53(9), 1017–1027. https://doi.org/10.35812/CelluloseChemTechnol.2019.53.100
Sultoni, A. F., Mawarani, L. J., & Budiono, A. (2014). Pengaruh penambahan alkali terhadap karakteristik bioplastik tepung porang-cassava. Jurnal Teknik ITS, 3(2), A163–A168.
Sumarwoto. (2007). Review : constituen of mannan of iles-iles (Amorphophallus muelleri Blume.). Bioteknologi, 4(1), 28–32.
Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079–1089. https://doi.org/10.1016/j.ijbiomac.2019.03.190
Tong, C., Wu, Z., Sun, J., Lin, L., Wang, L., Guo, Y., Huang, Z., Wu, C., & Pang, J. (2020). Effect of carboxylation cellulose nanocrystal and grape peel extracts on the physical, mechanical and antioxidant properties of konjac glucomannan films. International Journal of Biological Macromolecules, 156, 874–884. https://doi.org/10.1016/j.ijbiomac.2020.04.051
Wang, L., Auty, M. A. E., & Kerry, J. P. (2010). Physical assessment of composite biodegradable films manufactured using whey protein isolate, gelatin and sodium alginate. Journal of Food Engineering, 96(2), 199–207. https://doi.org/10.1016/j.jfoodeng.2009.07.025
Wang, L., Mu, R., Li, Y., Lin, L., Lin, Z., & Pang, J. (2019). Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nano fibril films. LWT - Food Science and Technology, 113, 108293. https://doi.org/10.1016/j.lwt.2019.108293
Wang, Q., Song, Y., Sun, J., & Jiang, G. (2022). A novel functionalized food packaging film with microwave-modified konjac glucomannan/chitosan/citric acid incorporated with antioxidant of bamboo leaves. LWT, 166, 113780. https://doi.org/10.1016/j.lwt.2022.113780
Witoyo, J. E., Argo, B. D., Yuwono, S. S., & Widjanarko, S. B. (2022). Optimization of fast maceration extraction of polished yellow konjac (Amorphophallus muelleri Blume) flour by Box-Behnken response surface methodology. Food Research, 6(5), 144–153. https://doi.org/10.26656/fr.2017.6(5).455
Witoyo, J. E., Argo, B. D., Yuwono, S. S., & Widjanarko, S. B. (2023). The response surface methodology approach successfully optimizes a dry milling process of porang (Amorphophallus muelleri Blume) flour production that uses micro mill-assisted by cyclone separator. Agricultural Engineering International: CIGR Journal, 25(1), 176–190.
Wu, C., Li, Y., Du, Y., Wang, L., Tong, C., Hu, Y., Pang, J., & Yan, Z. (2019). Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging. Food Hydrocolloids, 89, 682–690. https://doi.org/10.1016/j.foodhyd.2018.11.001
Wu, C., Peng, S., Wen, C., Wang, X., Fan, L., Deng, R., & Pang, J. (2012). Structural characterization and properties of konjac glucomannan/curdlan blend films. Carbohydrate Polymers, 89(2), 497–503. https://doi.org/10.1016/j.carbpol.2012.03.034
Yanuriati, A., Marseno, D. W., Rochmadi, & Harmayani, E. (2017). Characteristics of glucomannan isolated from fresh tuber of Porang (Amorphophallus muelleri Blume). Carbohydrate Polymers, 156, 56–63. https://doi.org/10.1016/j.carbpol.2016.08.080
Zhang, W., & Rhim, J. W. (2022). Recent progress in konjac glucomannan-based active food packaging films and property enhancement strategies. Food Hydrocolloids, 128, 107572. https://doi.org/10.1016/j.foodhyd.2022.107572